Appendix 15.2

Dredge Material Management Study

Contents

			Page			
1	Intro	duction	1			
2	Overv	Overview of proposed works				
	2.1	Construction programme	3			
	2.2	Arklow bridge works design	3			
	2.3	Dredge design	4			
	2.4	Debris and gravel traps	7			
	2.5	Dredge material management	8			
	2.6	Proposed site compounds and working areas	8			
3	Dredg	ge material management options	12			
	3.1	Material reuse	15			
	3.2	Soil Recovery Facilities	17			
	3.3	Disposal on land	18			
	3.4	Disposal at sea	19			
4	Existi	ng conditions	21			
	4.1	Bathymetric surveys	21			
	4.2	Site Investigations	21			
	4.3	Interpretation of ground conditions	24			
	4.4	Material waste classification	32			
	4.5	Material considerations	34			
	4.6	Archaeological investigation	37			
5	Stake	holder consultation	38			
	5.1	WCC Waste Section	38			
	5.2	Other LA Waste Section	38			
	5.3	EPA	38			
	5.4	Destination facility operators	40			
6	Asses	sment of dredge material management options	41			
	6.1	Inert material management strategy	41			
	6.2	Hazardous and non-hazardous material management	strategy 44			
7	Conel	usions	14			
1	Conci		40			
8	Recor	nmended strategy	48			

Appendices

Appendix A Ground Investigation data

Appendix B Avoca dredging exclusion zones

Appendix C NWCPO Local Authority Waste Facility Register

Appendix D Current Licenced Local Soil Recovery Facilities

1 Introduction

As part of the Arklow Flood Relief Scheme (FRS) Wicklow County Council (WCC), funded by the Office of Public Works (OPW), plans to undertake engineering works in the Avoca River to mitigate the risk of flooding.

The proposed scheme is being designed by Byrne Looby (BLP) for WCC, with Arup appointed to prepare an Environmental Impact Assessment Report (EIAR) for submission with the planning application for the scheme to An Bord Pleanála (ABP).

The proposed works include the construction of floodwalls and embankments and deepening of the river channel. This will require lowering the floor of Arklow Bridge including bridge underpinning, bridge remedial works and scour protection works. Lowering of about 850m length of the riverbed will be achieved through dredging upstream and downstream of Arklow Bridge. The destination of the excess material generated by the dredging work is the subject of this report.

Arup has been commissioned by Wicklow County Council to undertake a Dredge Material Management Study in relation to the above-mentioned works. The study outlined in this report covers the assessment of the various dredge material management options taking into consideration relevant European and national guidance. The study included further site investigation works to inform an options assessment process, and from the study the preferred options for the material management are recommended.

This report will inform elements of the Environmental Impact Assessment Report (EIAR) and will be included as an appendix to the EIAR. The study includes technical input from BLP on further development and assessment of the various works options, primarily on dredging and materials handling methodologies, in order to identify the preferred dredge material management option(s).

This report details the following:

- Overview of the proposed works;
- Outline of dredge material management options;
- Summary of existing conditions;
- Stakeholder consultation;
- Dredge material management options appraisal;
- Recommended dredge material management options.

Relevant supporting documentation is provided in the Appendices.

2 Overview of proposed works

The proposed deepening of the river channel is to be achieved through the following work packages:

- WP 1: Lowering the floor of Arklow Bridge including Bridge underpinning, Bridge remedial works and scour protection works.
- WP 2: Channel dredging upstream and downstream of Arklow Bridge.

Both work packages will generate excavated material or dredge material, which will need to be managed through one or a combination of potential dredge material management options. In addition, a small amount of material will be excavated from the riverbed as part of WP 3: Construction of debris and gravel trap with associated maintenance access.

The material management options are outlined in Section 3. Refer to Figure 1 below for the plan extent of proposed dredging works.

This section describes the dredging design and relevant construction considerations.

Figure 1: Extent of required dredging works shown in blue

2.1 Construction programme

Construction activities within the river channel, including dredging and excavation works, will be subject to seasonal restrictions and may only be undertaken during the fisheries open season (May to September inclusive), unless the consent of Inland Fisheries Ireland is obtained to work outside of this period.

Construction activity on the bridge is expected to commence in Quarter (Q) 1 of 2022 with WP 1 on the upstream and downstream sections of the southern half of Arklow Bridge and will run until the end of 2022. The works consists of half the bridge works and allows for continued in-channel flow through the northern half of Arklow bridge. The second phase of WP 1 would start in Q1 of 2023 and run until the end of 2023 with demobilisation following. Similarly, the third phase of WP1 would start in Q1 of 2024 and run until the end of 2024 with demobilisation following. River flows would be facilitated through the southern half of Arklow Bridge.

The main river dredging works WP2 is scheduled to commence in Q2 of 2025 with works to be completed by end Q3 2025.

Debris and gravel trap works WP3 will commence in Q2 of 2022 and continue from the North bank to the South bank, with completion by the end of Q3 in 2022.

2.2 Arklow bridge works design

It is proposed to lower the floor of Arklow Bridge by 1.0m which, along with associated upstream and downstream river dredging, will increase the conveyance through the bridge reducing flood levels upstream. See extent of proposed bridge lowering works in Figure 2.

Figure 2: Extent of proposed bridge lowering works

The lowering of the floor of the bridge will require underpinning of the bridge abutments and piers and the reconstruction of the scour protection slab at the new riverbed level. Reconstruction of the scour protection slab and lowering of the bed level will comprise the demolition of the existing concrete slab and excavation of the underlaying riverbed level to a depth of approximately 1.4m below the existing bed level. The new concrete scour protection slab will be approximately 350mm thick.

The concrete will be broken-out and removed separately from the underlying natural river-bed material, for appropriate re-use and/ or disposal. This material will have an approximate volume of 2,700m³.

The river-bed dredge material will be managed using the same dredge material management options as the overall dredge material. Approximately 5,800m³ of material will be excavated during these bridge works (excluding the existing scour bed to be broken out).

For further details on the construction methodology relating to the bridge works refer to the EIAR.

2.3 Dredge design

The proposed dredging works include the following:

- Dredging the river channel to a depth of up to 1m for approximately 325m upstream of Arklow Bridge (from the bridge to the junction of River Lane and River Walk); and
- Dredging the river channel to a depth of up to 1m for approximately 525m downstream of Arklow Bridge (from the bridge to the junction of South Quay and Harbour Road).

Note that proposed riverbed levels gradually fall between the upstream and downstream extents of the Avoca River and are detailed in the planning drawings. The exact dredge depths will vary locally depending on existing bed levels which may have altered since the most recent bathymetric survey due to erosion, deposition or any other river works that may have taken place.

Several sections downstream of Arklow Bridge are noted to have existing bed levels below the proposed deepened bed levels and as such dredging will not be required at these sections. Refer to Figure 3 overleaf for typical sections showing existing bed levels and proposed bed levels.

2.3.1 Dredge volume

Excluding the material excavated as part of WP1, a total of approximately 76,900m³ of sediment is required to be dredged upstream and downstream of Arklow Bridge. The estimated dredge volume is Byrne Looby Partners' design estimate which is based on the 2006 bathymetric survey.

As mentioned above, this volume will vary as a result of erosion, deposition or any other river works that may have taken place since the bathymetric survey was carried out, and volumes will increase or decrease accordingly.

CHAINAGE 1062

Figure 3: Typical sections showing existing and proposed bed levels

2.3.2 Dredge method

The material to be dredged mainly consists of sands and gravels and is further defined in Section 4.

Different dredge methods will likely be adopted for the upstream and downstream works owing to the access restrictions, dredge depths, water depths and vessel access.

The dredge methods outlined below have taken into account discussions between Byrne Looby Partners and dredging specialists.

Upstream works

Dredging upstream of Arklow Bridge will likely be carried out by long reach excavators, standard excavators and dump trucks. Due to the significant channel width it is considered likely that long-reach excavators will be used. Alternatively, dredging could be carried out by a drag line excavator.

Figure 4: Dredging by excavator from the river channel

Given the shallow water depths in this area, machine excavators can create temporary 'causeways' by excavating and relocating riverbed material within the river channel to gain access to all areas of dredge.

Excavators operate 'in the dry' and will load dump trucks on the temporary causeways. The machine excavators will likely start in mid-stream and work back towards the shore, removing the temporary causeways as they dredge.

Alternatively, larger 'dragline' excavators will operate from closer to the riverbanks, dredging the central channel areas to the river edges, for excavation there by standard machine excavators. The use of any floating plant or vessels upstream of the bridge is not anticipated due to area being inaccessible to dredging operation vessels.

Once full, dump trucks will stop either at SC3 or adjacent to RA4 (see section 2.6) to allow excess water to drain prior to transport to set down locations. Set down locations will be used for temporary storage of material as detailed in Section 2.4.

Downstream works

Dredging downstream of Arklow Bridge is expected to be carried out by a dragline excavator for the wider sections of river channel and by a long reach backhoe excavator sitting on a jack-up or spud barge for other areas (see Figure 5 below). The barge is typically manoeuvred by means of a tugboat. Suction dredgers are not suitable owing to the low volume of material to be dredged, depth of water and cost.

The dredge material will be loaded onto an adjacent dump truck. The use of dump trucks will require the construction of a haul road along the north and south quays. Any material inspections required can be conducted at the transfer location.

Figure 5: Example of a barge equipped with excavator

If dredge material is to be dumped at sea it will be loaded directly to a barge and transferred to the disposal site offshore. Alternatively, the material will be transferred from a river barge to a larger 'hopper' barge for dumping at sea.

For further details on the construction methodology relating to the dredging works refer to the EIAR.

2.4 Debris and gravel traps

The debris trap will be located approximately 300m upstream of Arklow Bridge. It is designed to catch floating debris that would otherwise be caught in Arklow Bridge, causing blockage of flow through the bridge.

The gravel trap will be located approximately 10m upstream of the debris trap. It will generally comprise a trough extending across the width of the river.

Approximately 900m³ of riverbed material will be excavated during the construction of the debris and gravel traps. This material will be managed using the same material management options as the overall dredge material.

2.5 Dredge material management

Dredge material arising from WP1, WP2 and WP3 will be subject to one or a combination of several dredge material management options. The total dredged volume to be managed will be approximately 83,600m³. Potential dredge material management options include the following:

- Beneficial reuse within the FRS;
- Beneficial reuse outside the FRS;
- Recovery on land;
- Disposal on land;
- Disposal at sea;
- Disposal overseas in a confined disposal facility (CDF).

These management options are described in further detail in Section 3.

Some of the above-mentioned management options may not be viable based on the chemical composition of the dredge material. Accordingly, material sampling and testing has been carried out to determine the chemical composition of the material as detailed in Section 4.

Dredge material may require inspection and further handling, or potential treatment prior to transfer to a final destination depending on the results of material testing. Any such works would likely be carried out at specified zones within site compounds. Refer to Section 2.6 for further details on proposed site compounds and working areas.

Based on archaeological investigation and consultation with the Department of Culture, Heritage and the Gaeltacht it is likely that, regardless of the management options selected, a portion of the dredge material will be subject to archaeological inspection as detail in Section 4.5. Set down areas will need to be provided in Site Compounds to accommodate these inspection works.

The transfer of dredge material between the point of excavation and the Site Compounds will need to be managed to minimise haulage distance and to reduce traffic impacts and potential material loss along the haulage route. Refer to the EIAR for further details on the proposed traffic management measures to be implemented.

2.6 **Proposed site compounds and working areas**

Dredge material will be transferred to site compounds for inspection, testing and further handling prior to transport to a final destination. Material arising from WP1, WP2 and WP3 will be transferred to site compounds as follows:

- Material arising from WP1 works at the bridge is likely to be transferred to SC2;
- Material arising from WP2 is likely to be transferred to SC1, SC2, SC5 and/ or SC6;
- Material arising from WP3 is likely to be transferred to SC6.

Site compound usage and construction programme associated with the various work packages is outlined in Table 1 below and shown in Figure 6 below.

WP Ref.	Contractor's Compound	Material Archaeological Testing	Material Temporary Storage	Time Frame
WP1	SC1	SC2	NA	Y1 - Y3
WP2	SC6	SC1, SC2, SC5 and SC6	SC1 and SC5	Y4
WP3	SC4	SC6	NA	Y1

Table 1: Summary of site compounds

Figure 6: Site compounds and river access locations

The proposed works to the Bridge under WP1 will take place in Working Area 1 (WA1) as shown in Figure 7 below. River access will be through river accesses RA1, RA2, RA6 and RA7. Direct access to SC3 is provided and access to SC1 will be required by road.

Figure 7: Working Area 1 (WA1)

The proposed dredging works under WP2 will take place in Working Area 2 (WA2) as shown in Figure 8 below. River access will be through access locations RA1, RA2, RA3, RA4 and RA8 and will depend on the chosen dredge method. Construction access will be required to SC1, SC2 and SC5.

Figure 8: Working Area 2 (WA2)

The works under WP3 will take place in Working Area 3 (WA3) as shown in Figure 9 below. River access will be through access locations RA4 and RA5. Construction access will be required to SC4.

Figure 9: Working Area 3 (WA3)

3 Dredge material management options

As mentioned in previous sections, the works associated with WP1, WP2 and WP3 will generate a volume of material that will be subject to one or a combination of dredge material management options. Some material may be suitable for reuse on site with remainder requiring transfer off site.

In generating and investigating potential dredge material management options Arup has adhered to the Environmental Protection Agency's (EPA) Waste Management guidance and, in particular, the waste hierarchy defined under the European Union Waste Framework Directive (Directive 2008/98/EC on waste).

The waste hierarchy emphasises preventing/ reducing, reusing and recycling of waste where possible with recovery and disposal being the least preferred methods for management of waste. Refer to Figure 10 below for the hierarchy for prioritising dredge material management adapted from Waste Framework Directive.

Further details on the proposed waste management strategy for the FRS can be found in the EIAR.

Figure 10: Hierarchy for prioritising dredge material management adapted from Waste Framework Directive, 2008

Taking this hierarchy into account, the following dredge material management options are deemed as possible for the scheme in order of priority:

- Beneficial reuse within the FRS;
- Beneficial reuse outside the FRS;
- Recovery on land;
- Disposal on land;
- Disposal at sea;
- Disposal overseas in a confined disposal facility (CDF).

Note that the proposed dredging works have been optimised so as to remove the minimum amount of material possible, but these works cannot be eliminated from the proposed FRS.

In order to assess the suitability of the various options it is necessary to analyse the chemical composition of the proposed dredge material by way of sediment sampling and testing. The composition of the proposed dredge material and the interpretation of the conditions is described in Section 4.

The flowchart shown in Figure 11 below outlines the available processes involved from the dredging activities to the implementation of the various dredge material management options. The management options are broken down into four stages or processes as follows:

- Excavation the various likely methods of excavation suitable for the materials and river environment;
- Transfer the available methods of transfer from point of excavation to treatment area, recovery site or disposal site;
- Treat/ Transport any potential treatment or method of transport to final destination;
- Reuse/ Recycle/ Disposal final destination classification and associated licencing/ permitting requirements.

The following sub sections briefly describe the various management options available and the requirements of each.

Figure 11: Flowchart showing potential options for dredge material

3.1 Material reuse

The dredge material may be reused within or outside the FRS depending on the physical and chemical properties of the material and compliance with material definitions that govern reuse, such as TII Earthworks Specifications and EPA waste exemptions.

The material reuse options are as follows:

- Reuse within the FRS
- Reuse outside the FRS Article 27 onshore
- Reuse outside the FRS Article 27 coastal
- Reuse outside the FRS Article 28

3.1.1 Reuse within the FRS

There are several potential beneficial uses for the dredge material on site as part of the FRS including as flood embankment fill or backfill material for floodwalls or other excavations e.g. excavations for drainage.

In general, the reuse of dredge material, including details of any containment or treatment, is outlined in the appropriate Planning Application documentation. If treatment of dredge material is required to render it suitable for reuse, it may need to be carried out under appropriate Waste Facility Permit or EPA Licence. No treatment or containment of material is required for this FRS based on the assessment of site investigation results detailed in Section 4.

To avail of this reuse option within the Arklow FRS:

- Mechanical properties of the material would need to be suitable for use as a fill material as defined within the TII specification, including engineering fill and landscape fill; and
- A materials shortfall would need to be identified within the site to take this material.

Approximately 10,000m³ of material could be reused as flood embankment fill and for backfill material for floodwalls and other excavations. The total available dredge material is estimated at about 83,600m³, therefore a balance of some 73,600m³ of dredge material has to be taken off-site.

3.1.2 Reuse outside the FRS

Excess material that cannot be reused within the FRS may be suitable for reuse outside the FRS as a by-product of the FRS construction process. The suitability of the dredge material for reuse will depend on a variety of criteria as detailed in Section 4.

Beneficial reuse of materials as a by-product is governed by Article 27 of the European Communities (Waste Directive) Regulations, 2011, which sets out the mechanism for notification of by-products in Ireland and that transposes Section 5 of the EU Waste Framework Directive 2008. Processing of 'waste' materials to produce 'end-of-waste' status for off-site reuse is governed by Article 28 of the European Communities (Waste Directive) Regulations.

Article 27

Soil and stone material may be classed as a by-product under Article 27 if it is uncontaminated and satisfies the following criteria:

- further use of the soil and stone is certain;
- the soil and stone can be used directly without any further processing other than normal industrial practice;
- the soil and stone are produced as an integral part of a production process; and
- further use is lawful in that the soil and stone fulfil all relevant product, environmental and health protection requirements for the specific use and will not lead to overall adverse environmental or human health impacts.

Provided the dredge material satisfies the above criteria, there are a variety of potential opportunities for reuse outside of the FRS including the following:

- Coastal protection schemes reuse as beach nourishment material onshore (e.g. Greystones North Beach nourishment arising from the Greystones Harbour project) or coastal protection offshore (e.g. Arklow South Beach or potential Irish Rail coastal protection schemes). Offshore works below the High-Water Mark (HWM) would require additional Foreshore Licencing.
- Flood relief schemes reuse of material for construction of other FRSs structures including flood embankments and backfill for excavations e.g. Enniscorthy Flood Defence Scheme.
- Quarry infilling reuse of material to restore old quarries by infilling e.g. Roadstone Huntstown South quarry, Co. Dublin.
- Site restoration reuse for licenced site restoration works with planning permission (landfill capping, tailings dam cover, etc.).

Any proposed sites for reuse under Article 27 would be required to have appropriate planning permission in place as well as meeting the acceptance criteria above.

Article 28

Certain specified waste can cease to be classed as a waste when it has undergone a recovery operation (including recycling) and complies with specific criteria to be developed in accordance with the following conditions:

- the substance or object is commonly used for specific purposes;
- a market or demand exists for such a substance or object;

- the substance or object fulfils the technical requirements for the specific purposes and meets the existing legislation and standards applicable to products; and
- the use of the substance or object will not lead to overall adverse environmental or human health impacts.

Article 28 determination is made on a material that arises from a process, rather than from a specific site, to cover long-term use of such materials from multiple sources. In Ireland to date it has been applied to some plastics and recycled concrete. It is not considered suitable for a single project such as this scheme where the materials arising are natural dredge materials.

3.2 Soil Recovery Facilities

Dredge material may be suitable for recovery depending on the physical and chemical properties of the material, within Soil Recovery Facilities (SRF). SRFs are operated under:

- (a) waste licences granted by the Environmental Protection Agency (EPA) (where the volumes of accepted materials are >100,000 tonnes per annum); or
- (b) Waste Facility Permits/Certificates of Registration granted by Local Authorities.

The EPA has published guidance on acceptance criteria at these facilities as outlined in the EPA document "*Guidance on waste acceptance criteria at authorised soil recovery facilities*, 2020".

As detailed in that document:

Authorised soil recovery facilities are often worked out quarries that are in the process of being restored. They may also be sites where soil and stone is being imported to raise natural ground levels. In all cases, soil recovery facilities are authorised to accept only uncontaminated soil and stone i.e., EU List of Waste Code (LoW) 17 05 04.

SRFs are not engineered to protect groundwater from contamination that may be present in soil and stone. Accordingly, the facilities only accept suitable uncontaminated material with limitations on the annual quantities of material that can be accepted.

The EPA guidance makes specific reference to LoW 17 05 06 (dredging material) where:

LoW 17 05 06 is outside the scope of this document and if an operator proposes to accept dredging material at their facility, they should submit details of the source material and the proposed waste acceptance procedures on a case by case basis to the Agency or Local Authority for their consideration. In the absence of any particular guidance in relation to limits for LoW 17 05 06 dredge material for recovery at SRF's, Arup has applied the values proposed for LoW 17 05 04 (Soil and Stones) published by the EPA in 2020.

3.3 Disposal on land

Dredge material that is not suitable for reuse or recovery due to its contamination may be disposed-of on land within licenced landfills (inert or non-hazardous), or if hazardous at a licenced facility abroad.

Landfills holding a licence from the EPA are able to accept dredge material, if the material's Waste Code (LoW) is included on the site's licence and the material passes the acceptance criteria for the site. In addition, hauliers must hold the relevant waste permits including reference to the appropriate LoW and the named landfill.

Dredge material is first assessed by waste code as hazardous or not, and if not then the material is also assessed using Waste Acceptance Criteria (WAC) to determine if it is suitable for delivery to inert waste, non-hazardous or hazardous facilities.

Dredge material has the following LoWs:

- 17 05 05* Dredging material containing hazardous substances; or
- 17 05 06 Dredging material other than those described in 17 05 05*.

The off-site disposal of dredged material requires determination of whether the material should be classified as 17 05 05* or 17 05 06.

The Waste Acceptance Criteria (WAC) are defined in the Landfill Directive (2002). According to the WAC a material with the waste code 17 05 06 is defined as one of the following:

- Dredge material suitable for delivery to an inert licensed landfill;
- Dredge material suitable for disposal to a non-hazardous licenced landfill;

Should the dredge material have a waste code 17 05 05*, or hold the waste code 17 05 06 but exceed the acceptance criteria for a non-hazardous licenced landfill, it is classed as dredge material suitable for disposal to a hazardous licenced landfill.

3.3.1 Inert waste facilities

Waste that does not undergo any significant physical, chemical or biological transformations and fulfils the requirements of the WAC for inert licenced landfills can be classed as inert waste. The leachability and pollutant content must be below the limits for inert licenced landfills and in turn must not impact surface water or groundwater quality at or around the receiving site to be suitable for delivery to an inert licenced landfill.

3.3.2 Non-hazardous landfills

This option applies if the material is classified as a waste and exceeds the WAC for inert licenced landfills but does not exceed the limits for non-hazardous licenced landfills. The material that holds the 'non-hazardous dredge material' LoW 17 05 06, can be disposed-of at a non-hazardous licenced landfill.

3.3.3 Disposal abroad – hazardous waste

For heavily contaminated dredge material, facilities have been developed in Europe to accept and contain sediments that are deemed in excess of set limits for disposal at sea or on land. These Confined Disposal Facilities (CDFs) set acceptance criteria, based on particular contaminants. This is to ensure that the void space within the facility is reserved for the most contaminated sediments and cleaner materials are not sent here unnecessarily. Such facilities do not exist in Ireland.

Sampling and testing would need to comply with the CDF acceptance criteria and demonstrate that the material is sufficiently contaminated to be accepted. A transfrontier shipment licence will need to be granted in order to transport the material from Ireland to continental Europe.

3.4 Disposal at sea

Dumping dredge material at sea in Ireland is regulated by the EPA and internationally by the OSPAR convention, to which Ireland is a signatory. Along with the Marine Institute, the EPA produce guidance on how the dredge material should be assessed prior to applying for a dumping at sea licence. In addition, disposal at sea requires foreshore licencing for the proposed disposal works as well as any investigations or surveys at the proposed dump site.

The Marine Institute, in line with the OSPAR guidelines, have developed a guidance note for the disposal of dredge material at sea, titled *Guidelines for the Assessment of Dredge Material for Disposal in Irish Waters*. This guidance defines the lower and upper level thresholds for individual contaminants, for the purposes of disposal at sea.

If the results show that the concentration of the contaminant in the sediment sample is:

- Below the lower level threshold the material is deemed to be suitable to be disposed of at sea;
- Above the upper level threshold the material is deemed to be contaminated and cannot be dumped at sea;
- Is between the upper and lower level threshold further discussion with regulators (Marine Institute, EPA) is required, to determine if the material can be disposed of at sea.

Wicklow County Council has previously used a licenced dumpsite to the north of the entrance to Arklow Harbour in the past for disposal of harbour dredge material with capping. Disposal at sea with capping is generally for material that shows a level of contamination considered by the EPA to exceed the minimum threshold for dumping at sea (without capping).

4 Existing conditions

4.1 **Bathymetric surveys**

Bathymetric surveys of the proposed dredge area have been carried out in 2006 and 2017. The surveys have been used to determine the volumes of material to be dredged as detailed in Section 2.3.1. The surveys covered both upstream and downstream of Arklow Bridge. Refer to figure below showing long section through the river centreline.

Figure 12: Long section through river

In relation to bed levels, the surveys show a steeply sloped bed (approximate slope of 1:250) from the downstream extent of the proposed works to just downstream of Arklow Bridge. The increased gradient is likely due in part to previous dredging of the harbour. The low flow channel is located on the left bank (North bank) at the downstream end and migrates to the right bank (South bank) just downstream of Arklow Bridge. This area is tidally dominated with water depths in the low flow channels varying from 3.7m at the downstream extent to 2.5m downstream of Arklow Bridge. Shallower sections of river along this stretch dry out at low tide.

Immediately downstream of Arklow Bridge there is a scour pocket extending approximately 30m downstream. The low flow channel is located along the right bank (South banks) at this section.

Upstream of Arklow Bridge the river slope is less steep (approximate slope of 1:450) with signs of deposition owing to reduced river velocities in this area. The low flow channel is on the left bank (North bank) in this area and transfers to the right bank (South bank) at Arklow Bridge. There are significant areas of deposition on the right bank (South bank) particularly immediately upstream of the bridge. Water depths upstream of the bridge vary with river flow but average depths in the low flow channels are circa 2.5m.

4.2 Site Investigations

Previous dredging works at Arklow Harbour have detected sediments in the river with elevated concentrations of copper and other metals as a result of historic mining of the Avoca mines, upstream of Arklow. Given the above-mentioned history of elevated concentrations of metals and that the proposed FRS includes dredging works as well as other works in the Foreshore, several phases of site investigations and associated assessments have been carried out previously as detailed below.

4.2.1 2008 Site Investigation

Arup were originally commissioned by the OPW in 2008 to assess potential environmental impacts arising from works proposed as part of the Arklow FRS. Under this commission Arup carried out a sediment contamination assessment for a section of the Avoca River from the harbour to upstream of Arklow town. The assessment focussed on the potential for the disposal of the dredge material under a Dumping at Sea license, as had been used for previous harbour dredge operations.

Sampling consisted of three different sampling methodologies with a view for classifying the material solely for Dumping at Sea as follows:

- 10 no. Sediment samples were collected from the riverbed, generally within the top 20mm;
- 6 no. Box core samples were collected from a depth of up to 1m below riverbed;
- 4 no. Bank Samples were collected which were grab samples collected from the exposed riverbank during low tide.

The samples were tested for a suite of parameters related to dumping at sea. The report found that the samples recovered were classified as Class 2 sediments for Dumping at Sea. This was defined within the report as having contaminant concentrations between the upper and lower limits outlined in the Marine Institute Dumping at Sea guidelines and therefore marginally contaminated.

4.2.2 2017 Site Investigation

In 2017 additional site investigation was commissioned. The main purpose of this site investigation was to further assess possible alternative dredge material management options including various options for reuse, recovery and disposal on land for the river sediments likely to be dredged as part of the proposed FRS.

Furthermore, given the previous site investigation looking at Disposal at Sea was approximately 9 years old, it was decided to use the opportunity to gather additional information to further verify the previous investigation considering the estuary is a dynamic environment.

Based on the knowledge of historical contamination in the river, Arup scoped, and Wicklow County Council procured and managed, a detailed site investigation in 2017 within the proposed dredge area of the FRS. A summary of the results from the 2017 site investigation are provided below.

Site operations, which were conducted between 7 November and 10 November 2017, comprised of:

- 9 no. light cable percussion boreholes;
- Soil sampling for geotechnical and environmental analysis.

The locations of the exploratory holes are shown in the ground investigation report and were located across the proposed dredge area.

The material was tested against the criteria associated with the following dredge material management options:

- Disposal on land beneficial reuse and licenced landfills;
- Disposal at CDF;
- Disposal at sea.

Physical composition of the material, including particle size distribution, was tested to assess the suitability of the material for reuse, as well as informing any future dredge methodologies.

4.2.3 2020 Site Investigation

The 2017 ground investigation described in Section 4.2.2 recovered 24 no. sediment samples from depths ranging from 0.1m below riverbed to 3.0m below riverbed.

When assessed it was noted that 9 of the 24 samples failed the inert WAC limits, therefore indicating disposal to a non-hazardous licenced facility. The parameters which exceeded the WAC Inert Limits were chlorides and total dissolved solids (TDS).

On account of the exceedances identified in the 2017 investigation it was proposed to re-examine these sediments and resample the river sediments to:

- Measure any reduction in chloride content through repeat leaching;
- Measure chloride content in the river and adjoining marsh groundwater;
- Measure standard disposal suite of testing on these additional samples.

Refer to Appendix A for further details of the 2020 site investigation and the associated assessment.

Sampling

On 1 July 2020, 6 no. samples of river sediment were recovered from the bed of the Avoca River. The sampling of the riverbed sediments was undertaken by machine excavator operating from the south bank of the river. The samples were taken at low tide through a shallow depth of river water.

Two samples (A and B) were obtained from each location (S1, S2 and S3). The first sample (A) was taken from the top of the riverbed, with the second sample (B) being taken approximately 200-300mm deeper than the first sample.

In addition to sediment sampling, three samples of river water were collected at the site over the course of the day, at three separate times; 10:45am, 1:00pm and 4:00pm to allow for tidal variance.

On the following day, 2 July, three groundwater samples were recovered from the wetland to the northwest of Arklow Bridge. Groundwater samples were taken from three standpipes previously constructed during an earlier hydrological study of the wetland. Samples were recovered from WS08, WS09 and WS13.

Testing

The sediment samples were compared to two sets of criteria; the WAC criteria (to compare with previous data) and the SRF acceptance criteria.

The WAC criteria are the acceptance criteria for materials being disposed of to landfill.

The SRF criteria are the acceptance criteria for Soil Recovery Facilities or other waste permitted sites. These criteria are also used as initial screening values for materials being proposed for Article 27 applications, representing characteristic concentrations for parameters in line with the local baseline for natural soils. This assessment was based on the recently published *EPA Guidance on waste acceptance criteria at authorised soil recovery facilities (2020)*. Accordingly, the SRF criteria assessment had not been carried out on previous GI results.

4.3 Interpretation of ground conditions

4.3.1 Ground profile

Ground conditions have been interpreted based on the findings from the above 3 phases of site investigations.

The bulk of the proposed dredge material will comprise of natural sands and gravels, with the balance of the dredge material compromising of a surface layer of fill (silty riverbed with fill material containing anthropogenic material). An isolated clayey stratum was noted in BH01 from the 2017 site investigation, but this was limited in its extent from 1.7 to 2.2m below riverbed.

The sampling in 2020 revealed a thin surface layer of fill over the natural riverbed deposits on the right bank upstream of Arklow Bridge. This fill comprised a black silty sand and gravel with abundant anthropogenic material, including glass, metal, clay and concrete. The layer has likely accumulated over time from general dumping of materials along the south bank of the river. The area is located on the inside of a river bend where deposition of finer silts would be expected as a result of reduced water velocities, hence the silty matrix. The material showed visual signs of hydrocarbon product at Sample location 3, as shown in Figure 13 below. The depth of the fill layer looks to range from a thin deposit (<100mm) at locations 1 and 2, up to about 300 to 400mm at location 3. The area of this fill does not appear to extend out into the river as it is not recorded in nearby boreholes from earlier ground investigation, and the river flow would likely scour such deposits over time.

Figure 13: Sample 3 showing signs of hydrocarbons

Underlying the thin layer of fill, are the natural alluvial sand and gravel deposits found extensively throughout the area of river channel to be dredged. These natural sand and gravel deposits extend to a depth of at least 3m across the full area of river channel.

Some anthropogenic material was mixed in the shallow samples recovered from the riverbed, including glass and metal, as shown below in Figure 14.

Figure 14: Photos from Sampling (Location 2)

The recent trial pits clearly showed the visual distinction between the black silty fill and the underlying natural brown sands and gravels.

4.3.2 **Physical properties**

The sand and gravel samples recovered from the 2017 ground investigation were tested for moisture content, Atterberg Limits and Particle Size Distribution.

Moisture contents had an average value of 13.9% and a median value of 4.3%. One 'outlying' sample as noted above at 1.8m depth in BH01, located below proposed dredge levels, was clayey and organic with a moisture content of 190%.

Atterberg Limit tests for all samples (except for BH01 at 1.8m depth) were shown to be non-plastic.

The grading curves for the samples are presented below and show that all of the samples (except BH01 at 1.8m depth) were described as sands and gravels with very little silt or clay present. The samples tested for PSD ranged from 0.8m to 2.8m depth below riverbed.

Figure 15: PSD Curves from 2017 Ground Investigation

The majority of the samples would fall within the Class 1A grading curve taken from the TII Specification for Roadworks, Series 600, Table 6/2, with the sole fine-grained sample from BH01plotting within the Class 2A & 2B curve from the same table.

4.3.3 Chemical properties

The results of the chemical testing completed on all samples are described below, in relation to the relevant limits for dumping-at-sea, landfilling (WACs) and recovery (SRFs).

Dumping-at-Sea

The results of the testing undertaken in 2008 are presented below, for those parameters where the concentrations exceeded the lower threshold level for dumping at sea.

Metals	Units	BS4	BC4	SS2	SS3	SS4	SS5	BC5	SS6	BC6
Arsenic: Dry Wt	mg/k g	8.5	47.2	10.3	7.9	<1.00	<1.00	84.3	7.0	19.6
Cadmium: Dry Wt	mg/k g	0.5	0.8	0.3	0.7	0.2	0.2	2.8	0.8	1.7
Copper: Dry Wt	mg/k g	98.6	745.0	78.0	136.0	101.0	31.5	575.0	71.2	121.
Lead: Dry Wt	mg/k g	126.0	142.0	64.9	69.9	57.9	30.1	309.0	79.1	153.
Nickel: Dry Wt	mg/k g	16.8	14.6	23.1	21.9	18.0	17.7	17.5	15.5	21.8
Zinc: Dry Wt	mg/k g	215.0	367.0	241.0	306.0	218.0	132.0	807.0	254. 0	372.
PAHs										
Total PAHs	ug/kg	779	328	908	314	321	338	10124	335	3283

Table 2: 2008 GI results

Using the DCMNR 2006 Guidelines, the Avoca's sediment within the study area for the Arklow Flood Relief Scheme was rated as a Class 2 sediment (marginally contaminated).

Waste Acceptance Criteria (WACs)

Of the 24 no. samples tested in the 2017 ground investigation against the WAC for disposal, 15 no. were deemed to be suitable for delivery to inert waste facilities. A further 8 no. were deemed to require disposal to a non-hazardous licenced landfill, due to the presence of slightly elevated chloride (with three of those showing associated elevated total dissolved solids), and the remaining 1 no. sample contained identifiable but not quantifiable asbestos fibres and therefore classed as non-hazardous.

The proposed dredging required for the Arklow FRS scheme is limited to a maximum dredge depth of 1m of riverbed material, over the subject area. Given that the 2017 investigation included sampling to 3m below riverbed level, the upper nine samples were from the material which is being dredged from the river. The remaining 15 no. samples are from below the level of proposed dredge. These 15 no. samples of deeper riverbed are consistently clean sand and gravel deposits and generally classified as inert. These deeper samples below dredge level are not part of the works and therefore are not considered further. The WAC results for the 9 relevant samples are shown below.

Location	Depth	Category based on WAC screening	Asbestos waste classification	Hazardous waste online tool	Final categorisation	Comment
BH01	0.1	Inert	No Asbestos Detected	Non- Hazardous	Inert	
BH02	0.5	Inert	No Asbestos Detected	Non- Hazardous	Inert	
BH03	0.5	Inert	No Asbestos Detected	Non- Hazardous	Inert	
BH04	0.5	Inert	No Asbestos Detected	Non- Hazardous	Inert	
BH05	0.5	Non-Haz	No Asbestos Detected	Non- Hazardous	Non-Haz	Chloride
BH06	0.5	Non-Haz	No Asbestos Detected	Non- Hazardous	Non-Haz	Chloride
BH07	1	Inert	No Asbestos Detected	Non- Hazardous	Inert	
BH08	1	Inert	No Asbestos Detected	Non- Hazardous	Inert	
BH09	0.5	Non-Haz	No Asbestos Detected	Non- Hazardous	Non-Haz	Chloride

Table 3: WAC Classifications - 2017

As seen above the bulk of results are inert, and the non-hazardous results are due to slightly elevated chloride concentrations. As noted above in Section 4.2.3, the further sampling in 2020 was undertaken primarily to further assess and understand these slightly elevated chloride levels.

Of the 6 samples tested from the 2020 ground investigation, 3 no. samples were classed as inert (Samples 1A, 1B and 2B), 1 no. sample was classed as requiring disposal to a non-hazardous licenced landfill (Sample 2A (elevated antimony)). The remaining 2 no. samples requiring disposal to a hazardous licenced facility (Sample 3A and 3B).

The samples requiring disposal to a hazardous licenced landfill were classified as such based on the 17 05 05* classification, but they also contained concentrations of mineral oil, antimony and molybdenum above the inert limits, as shown below.

Sample Number	Category based on WAC screening	Asbestos waste classification	Hazardous waste online tool	Final categorisation	Comment
Sample 1A	Inert	No Asbestos Detected	Non- Hazardous	Inert	
Sample 1B	Inert	No Asbestos Detected	Non- Hazardous	Inert	

Table 4: WAC Classifications - 2020

Sample Number	Category based on WAC screening	Asbestos waste classification	Hazardous waste online tool	Final categorisation	Comment
Sample 2A	Non-Haz	No Asbestos Detected	Non- Hazardous	Non-Haz	Antimony
Sample 2B	Inert	No Asbestos Detected	Non- Hazardous	Inert	
Sample 3A	Non-Haz	No Asbestos Detected	Hazardous	Hazardous	Mineral Oil, Copper and Zinc
Sample 3B	Non-Haz	No Asbestos Detected	Hazardous	Hazardous	Antimony, Molybdenum, Mineral Oil, Copper and Zinc

Soil Recovery Facilities (SRFs)

Analysis of the results against SRF limit values is required for both soil recovery and Article 27 reuse options. A retrospective SRF comparison was carried out on the samples from the 2017 ground investigation, under the 2020 EPA guidance. One exceedance of the SRF limits was observed. Sample BH02 at 0.5m below riverbed showed a minor exceedance for mineral oil, as shown in the table below.

Analytical Parameter	Units	Limit EPA Facilities	BH02 @ 0.50m
Arsenic	mg/kg	41.5	13.10
Cadmium	mg/kg	1.42	0.17
Total Chromium	mg/kg	73.2	17.00
Copper	mg/kg	77.6	40.90
Mercury	mg/kg	0.302	< 0.015
Nickel	mg/kg	65.7	14.50
Lead	mg/kg	109	34.70
Zinc	mg/kg	224	108.1
Total Organic Carbon	%	3	0.13
Total BTEX	mg/kg	0.05	< 0.055
Mineral Oil (>C10-C35)	mg/kg	50	58
Total Of 17 PAH's	mg/kg	1	<1.47
Total PCBs (7 Congeners)	mg/kg	0.05	<0.60
Asbestos	N/A	NAD	NAD

Table 5: 2017 Dredge Samples compared to SRF

Within this sample, the detection limits for both BTEX and PAH were noted to exceed the limit for SRF, however given the absence of any other hydrocarbon compounds in the samples and given that these parameters are groupings (i.e. BTEX = Benzene, Toluene, Ethyl-Benzene and o, m and p Xylenes, PAH is the sum of 17 individual compounds) where none of the speciated constituents were noted above the detection limit they were accepted as passing the requirement.

The sediments recovered during the 2020 ground investigation were also compared to the SRF limits and the following table summarises the exceedances.

Sample	Exceeding Parameter
S1A	Chromium, PAHs
S1B	Chromium (within 50% of the limit)
S2A	Chromium, Copper
S2B	Chromium
S3A	Arsenic, Cadmium, Chromium, Copper, Lead, Zinc, Mineral Oil
S3B	Arsenic, Cadmium, Chromium, Copper, Lead, Zinc, Mineral Oil, PAHs

Table 6: SRF Exceedances 2020

As with the WAC analysis, the results from the 'fill' at Sample 3, and surface samples at locations 1 and 2 show exceedances for several parameters. The exceedances for the underlying natural sands and gravels are only for chromium and Sample 1B was within 50% of the prescribed limit.

Chlorides

As noted above the 2020 site investigation included further assessment of the slightly elevated chloride levels detected in some of the 2017 natural sand and gravel samples, to compare them with surface water and groundwater levels. Chlorides concentrations were tested from the 2020 sediment samples, Avoca River water samples, and groundwater samples from the standpipes in Arklow Marsh. From each dataset, the maximum, minimum and median values are presented below.

Figure 16: Chloride concentrations

The data shows a 'peak' maximum value of 161mg/l in the sediment that substantially higher than the values detected in surface water, groundwater and the samples from 2020.

However, the median value for the 2017 (24 no.) sediment result compares closely with the median value for the groundwater results, obtained from the pNHA to the north of the Avoca River.

Surface water values are generally lower than the results from the groundwater and sediment sampling (both in 2017 and 2020) values.

As noted above, the sediment samples were collected to further assess the slightly elevated chloride concentrations detected in sediments from the 2017 GI in samples BH05, BH06 and BH09 and examine their behaviour under repeated leaching. The samples were re-leached twice according to the CEN 10:1 leachate method as required for WAC testing. A further sample was re-tested after rinsing with ordinary water. This was to simulate the washing of materials over time and what would happen if these sediments were left to freely drain in the open, exposed to rainfall.

Figure 17: Chloride Concentrations in successive leachates

Figure 17 presents the chloride concentrations in successive leachates, and clearly shows removal of virtually all chlorides through leaching. This removal occurred in Samples 1A, 1B, 2A and 2B after the second test, and in Samples 3A & 3B after the third test, the slower response in 3A/3B likely due to the much finer-grained material being slower to leach. The rinsed sample also showed the same significant reduction in chloride levels.

The above analyses demonstrate that the slightly elevated chloride levels will fall once the material is dredged out of the river through natural drainage of the saline water, and while temporarily stockpiled/stored for inspection before removal offsite.

4.4 Material waste classification

The above screening of test data against the relevant limit values, is used to determine the relevant soil classifications for all dredged sediments. These classifications then determine what options are available for the reuse, recovery or disposal of each strata.

4.4.1 Reuse or disposal onshore

Based on the WAC assessment carried out on the samples, for both the 2017 GI and the 2020 sampling, the following can be stated.

The sediments at one location (Location 3 from the 2020 survey) are soils contaminated by anthropogenic fill at the river surface, and are classified as requiring disposal to a hazardous licenced landfill due to the following:

- Classified as LoW Code 17 05 05*, implying they are hazardous, due to elevated concentrations of copper and zinc; and
- Exceedance of the WAC limits for inert licenced landfills in mineral oil, antimony and molybdenum;

A total of 4 no. samples were identified as requiring disposal to a non-hazardous licenced landfill. These can be split into two groups:

- One sample (Sample 2A from the 2020 GI) showed elevated antimony when compared to the inert licenced landfill limits. This sample is most likely also impacted by anthropogenic material at the riverbed surface and would require disposal to a non-hazardous licenced landfill; and
- Three samples from the 2017 GI (BH05 at 0.5m, BH06 at 0.5m and BH09 at, 0.5m) all had chloride concentrations in excess of the limits for an inert licenced landfill. These slightly elevated chloride levels are likely due to natural saline intrusion given the tidal influence on this section of river. Hence further sampling and testing was undertaken in 2020 for chloride levels following washing with fresh water, and more aggressive repeat leaching tests, to simulate temporarily stockpiled dredge material.
- Chloride concentrations detected in the 2020 samples were noted as decreasing significantly following washing and repeated leaching, indicating that concentrations would decrease naturally when excavated and allowed to drain. Accordingly, if the material is stockpiled on site for some time prior to removal offsite, the chloride concentrations are likely to reduce as the water drains out. This process would be accelerated through natural means such as rainfall, or due to common construction practices such as the wetting of soil stockpiles for dust suppression. Therefore, it would be prudent to carry out verification sampling and testing of the materials in advance of removal offsite, as it is expected that much of this material could be deemed to be inert.

The 2017 and 2020 test results were also compared to the SRF acceptance criteria indicating the following:

- The 2017 data indicates a small number of exceedances were present (three no. samples from 24 no.) and of the samples directly relevant to the proposed dredge material, only one no. sample showed an exceedance against these criteria (BH02, 0.5m, Mineral Oil);
- The 2020 data indicates that there are exceedances in all samples as detailed below, and therefore these materials would not be suitable for disposal to a permitted site:
 - Sample 1-A shows exceedances in PAHs with minor exceedances in Sample 1-A and 1-B in relation to Chromium;
 - Sample 2-A and Sample 2-B show major exceedances in relation to chromium and a major exceedance of copper in Sample 2-A.
 - Sample 3-A and Sample 3-B show minor exceedance of the chromium limits in both samples and major exceedances in arsenic, cadmium, copper, lead, zinc, and mineral oil. PAH's were located in Sample 3-B only.

Asbestos was detected at very low concentrations (<0.01%) in one sample (BH05, 1.0m below riverbed) from the 2017 ground investigation, however this is located below the proposed dredge level. None of the other samples from all site investigations detected any asbestos, including the samples taken above and below the affected sample at BH05.

In summary, the majority of the material to be dredged is clean inert sands and gravels with a small portion of hazardous and non-hazardous material, found primarily as a thin surface layer of fill material along the south bank of the river. In addition, some areas to be dredged have natural slightly elevated chloride concentrations. Temporary stockpiling this material is likely to allow natural reduction in chloride concentrations sufficiently so this material could be deemed to be inert.

The approximate breakdown of the material classification is shown in Table 7 below. Note that a conservative approach has been taken in the event that more of the higher contaminated materials are encountered during the works, and that actual quantities will be monitored with verification testing.

Material classification	Percentage of total dredge material	Approximate volume (m ³)
Inert sands and gravels	70	58,500
Non-hazardous with slightly elevated chloride concentrations	20	16,700
Non-hazardous waste	7	5,900
Hazardous waste	3	2,500

Table 7: Material	classification
-------------------	----------------
4.4.2 Dumping at sea

The results from the 2017 site investigation indicated that although no samples showed concentrations that exceeded the upper level threshold for disposal at sea, some samples showed concentrations of arsenic, cadmium, copper, lead and zinc that exceed the lower level threshold.

The 2017 results were consistent with the 2008 results and suggested that there were some areas in the river where the dredge material contained elevated concentrations of zinc and copper.

The identification of the dredged soils being between these thresholds means that a risk assessment of potential impacts on the receiving marine dumping site would be required for a dumping at sea licence.

The shallow layer of contaminated fill testing as non-hazardous and hazardous is not suitable for disposal at sea.

4.4.3 Disposal at CDF options

CDFs are constructed to store heavily contaminated dredge material. There are currently no such facilities in Ireland, but there are a number of CDFs located across Europe, particularly in Germany, Belgium and the Netherlands. The facility in the Netherlands is called the Slufter and Arup specified the testing for the 2017 site investigation to comply with the acceptance criteria for the Slufter CDF.

CDFs generally have strict acceptance criteria, in that the material to be deposited must be heavily contaminated in order for it to be accepted. This is to minimise the amount of non-contaminated material filling the limited space. CDFs are operated privately, so there are no statutory limits as to what can or cannot be accepted; the levels are set by the facility and can fluctuate depending on remaining capacity and/or market conditions.

The results from the 2017 site investigation demonstrated that the copper concentration of the proposed dredge material slightly exceeded the minimum acceptance criteria for the Slufter CDF in the Netherlands at that time in just two locations. This would mean that the material could potentially be accepted at a CDF, however, the operators could argue that it demonstrates a small degree of contamination and that the suitable soils would require separation from the remainder of the material.

4.5 Material considerations

The available dredge material management options are dependent upon the contamination levels of the soils encountered. The EPA's materials assessment hierarchy is used for identifying the most appropriate option for each category of materials identified.

As mentioned above the material to be dredged can be divided into four classifications as follows:

- Inert sands and gravels;
- Non-hazardous with slightly elevated chloride concentrations;
- Non-hazardous waste;
- Hazardous waste.

Volumes of the various material classifications are detailed in Table 2 above.

Refer to Figure 18 and Figure 19 below for approximate plan extent of the aboveclassified areas and Appendix B for an overall plan view of the classified areas.

Figure 18: Hazardous and non-hazardous dredge zones

Figure 19: Chloride impacted dredge zones

4.5.1 Inert sands and gravels

This material is suitable for reuse within the FRS scheme for embankment construction and wall backfilling. It is also suitable for reuse as by-product (Art 27) if there are suitable destinations available at the time of construction. Should suitable Article 27 options not be available over the required period, this material could be sent for recovery to available Soil Recovery Facilities (SRFs).

The full volume of inert sands and gravels will be accommodated through one or a combination of several of these options.

4.5.2 Non-hazardous with slightly elevated chloride concentrations

The sands and gravels with slightly elevated chloride levels due to saline intrusion are suitable for reuse within the FRS scheme for embankment construction and wall backfilling. The sampling and testing of both the river water and groundwater in the adjoining marsh show similarly elevated chloride levels. Therefore, reuse of these materials directly for embankments along the edge of the marsh is appropriate.

For off-site reuse the material will undergo temporary storage on site to allow the material to drain, with exposure to the elements and dust suppression measures. As demonstrated through laboratory testing, this normal handling of the materials will effectively reduce chloride concentrations, that will be below WAC non-hazardous. This will enable these sands and gravels to be reused as Article 27 by-product, or for soil recovery. Further testing at the time of proposed removal off-site will be required to confirm the material's suitability for reuse or recovery.

The majority of this material is likely to be suitable for reuse under the EPA's Article 27 process. The material is also suitable for acceptance at Soil Recovery Facilities and inert waste facilities.

Any surface water runoff from the material during storage is suitable for discharge back into the surface or groundwater system in terms of chloride content, through standard control measures such as silt traps before discharge, under the permission of WCC.

4.5.3 Non-hazardous waste

This material is not suitable for reuse and must be disposed of at a non-hazardous licenced landfill. Additional sampling and testing will be required pre-dredging to further define the extent of this material.

In-situ treatment options are not feasible for this material. Temporary storage areas will be required to separate non-hazardous material from other material classifications.

4.5.4 Hazardous waste

This material is not suitable for reuse and must be disposed of at an authorised hazardous treatment, recovery or disposal waste facility. Additional sampling and testing will be required pre-dredging to further define the extent of this material.

Temporary storage areas will be required to separate hazardous material from other material classifications.

4.6 Archaeological investigation

As part of the EIAR Arup scoped, procured and managed an underwater archaeological inspection of the proposed area of the bridge works and the dredging works. Following inspection, Arup liaised with the Department of Culture, Heritage and the Gaeltacht regarding the findings and the likely implications relating to archaeological inspection during construction works.

The findings and the implications are described below. For further details relating to archaeology refer to the EIAR.

4.6.1 Downstream of Arklow Bridge

The area downstream of Arklow Bridge is of lesser heritage sensitivity overall compared with upstream of the bridge.

The Department indicated that dredge material will require inspection following dredging. This will involve metal detection and visual inspection post excavation facilitated by the laying out of the dredge material in 100-200mm layers. Inspection can take place adjacent to the works, at an intermediate location (having regard to drainage requirements) or at the final destination. The percentage requiring inspection would be reviewed as works progress, scaling up or down as agreed with the Department.

It may be possible to inspect the excavated material while reusing dredge material during embankment construction. The inspection of the dredge material is considered in the identification of potential construction areas as detailed in the EIAR. SC5 is currently considered to be an appropriate area for inspection of the material.

4.6.2 Upstream of Arklow Bridge

The area upstream of Arklow Bridge is of greater heritage significance as the Arklow medieval town was located upstream. In addition, other finds identified in the records and surveys were mostly located in this area. It is assumed the medieval shoreline no longer exists and that the shoreline upstream is reclaimed.

The Department indicated that the dredge material from this area will require inspection as per the inspection method described above.

The percentage requiring inspection would be reviewed as works progress, scaling up or down as agreed with the Department. SC1, SC3 and SC4 are currently considered to be appropriate areas for inspection of the material.

5 Stakeholder consultation

As part of the assessment of dredge material management options, key stakeholders were consulted as reported below.

5.1 WCC Waste Section

Arup liaised with WCC Waste Section as the statutory body for approval of potential options including reuse within the scheme, or potential off-site disposal at permitted sites. The WCC Waste Section is responsible for the granting of waste permits for sites/ facilities in the jurisdiction of WCC.

Arup held a meeting with WCC Waste Section on 2 July 2020 to discuss the details of the proposed dredging works and possible options for reuse and disposal of the dredge material.

In relation to material reuse WCC are a consultee of the EPA for Art 27 applications within their jurisdiction. WCC were not aware of any Article 27 'destination' facilities operating within the county at present.

WCC Waste Section provided updates on four no. sites that are currently authorised waste outlets. Details of the updates provided are as follows:

- <u>Scratenagh</u> capacity of 80,000t (~40,000m³) total and is located circa 8km from Arklow;
- <u>Templerainey</u> capacity of 50,000t (~25,000m³) total over 3-year period and is located circa 4km from Arklow;
- <u>Rathdrum</u> (near cemetery) capacity of 100,000t (~50,000m³) over 4 years period and is located circa 17km from Arklow;
- <u>Donard</u> (old quarry) capacity of 100,000t (~50,000m³) up to 2024 and is located circa 42km from Arklow.

WCC Waste Section noted that in general, maximum allowance at each site is capped at 25,000t per year to keep below EIAR thresholds. To counteract this the dredge material management could spread between several sites.

5.2 Other LA Waste Section

Arup contacted Wexford County Council (WeCC) in relation to identification of existing authorised waste facilities in Co Wexford as well as potential future facilities. WeCC provided a list of current authorised facilities with the named facilities matching those obtained from the National Waste Collection Permit Office (NWCPO) website. Refer to Appendix C for a register of facilities accepting EWC Code 17 05 06 in Wexford. The register shows 5 no. sites located within circa 18km of Arklow.

5.3 EPA

The EPA were consulted relating to dumping at sea, and on-land reuse options.

Dumping at Sea

In 2008 Arup consulted with the EPA's Dumping at Sea Section in relation to the potential dumping at sea application process. At that time this option was considered as Wicklow County Council had previously deposited dredged material from Arklow harbour into a licensed dumping-at-sea facility north of Arklow. During this consultation process the EPA detailed the application process and the elements required in a Dumping at Sea application, which included but are not limited to the following:

- Sediment dispersion modelling for dredging and dumping activities;
- Stakeholder consultation e.g. NPWS, Marine Institute, local fisheries etc.;
- Proposed dredging and disposal methodology;
- Management plan for the dump site;
- Benthic surveys of the dump site.

As noted above the slightly elevated levels of some contaminants above the lower DaS threshold means that further risk assessment of this potential option would be required. The EPA did indicate that a new license would most likely be required and that dredge material would require capping if this option were to be pursued.

The EPA guidance for dumping at sea applications also states:

'In accordance with Section 5(2) of the Dumping at Sea Act 1996 as amended the dumping of substances or material at sea is only acceptable when the Agency is satisfied that there is no suitable alternative means of disposal. The First Schedule states that the Agency must take into consideration the practical availability of alternative land-based methods of treatment, disposal or elimination, or of treatment to render the substance or material less harmful for dumping at sea. Applicants must demonstrate that all alternative means of land-based disposal and/or beneficial reuse of the material have been investigated prior to applying for a dumping at sea permit. The applicant shall also demonstrate that all necessary steps have been taken to minimise the quantity of material to be dumped or to render the material less harmful for dumping at sea.'

Following the above EPA consultation process further investigations of other more sustainable options were examined, including potential reuse as a by-product under Article 27.

Article 27

In September 2020 Arup consulted the EPA waste licensing section (Article 27 section) in relation to the options for reuse of the dredge materials. The EPA confirmed that dredge material, if shown to be natural undisturbed soils, is suitable for consideration as a by-product under the Article 27 guidance. The EPA also confirmed the need for specific testing relating to dredge material listed in their guidance documentation.

5.4 Destination facility operators

Arup has liaised with the two largest quarry operators that have facilities within the general hinterland of Arklow, to identify any potential reuse, recovery or disposal destinations (permitted sites, inert waste facilities, etc.). The findings of this consultation process are detailed below.

5.4.1 Roadstone

Roadstone operate a number of quarry infill facilities including Article 27 byproduct, licensed SRF and inert waste facilities. Details relating to these SRFs are outlined below and in Appendix D which has been generated using information from the EPA website.

Calary, Co Wicklow

Roadstone have a dis-used quarry at Calary, County Wicklow, that has recently been granted a Soil Recovery Facility (SRF) permit. It is anticipated that the site at Calary Quarry is due to open in the coming months as dewatering of the quarry continues. The Calary site will initially be operate as an SRF but Roadstone indicated they may submit for wider acceptance criteria to the EPA for approval in the future.

Huntstown, Co Dublin

Roadstone is currently operating two facilities at Huntstown:

- Huntstown North quarry is a permitted soil recovery facility. Updated acceptance criteria have recently been submitted to the EPA for approval, based on the recent guidance issued by the EPA.
- Huntstown South quarry is operated as an Article 27 by-product facility and has been accepting Article 27 by-product for the past 2 years.

Roadstone have other quarry facilities in the area, including SRF facilities with some capacity at Brownswood (Enniscorthy) and Milverton (Skerries), that may be expanded in the future. Roadstone also have a rock quarry at Arklow Rock, which will be designated for recovery/restoration in the coming years and may provide alternative options.

5.4.2 Kilsaran

Kilsaran own a quarry near Arklow at Ballinclare for which they intend to submit a planning application for restoration of the quarry at some stage in the future. We understand the facility classification has yet to be decided but anticipated to be a soil recovery facility.

6 Assessment of dredge material management options

Following investigation of the existing conditions at site and the stakeholder consultations, Arup has assessed the viability of the dredge material management options detailed in Section 3 for application to the Arklow FRS dredge material.

This assessment was undertaken in the context of the EC and National Waste Hierarchy illustrated in Figure 10 and indicates a ranking of dredge material management options given in Table 8 below.

Option Number	Dredge material management options	Ranking
1	Reuse within the FRS	1
2	Beneficial reuse outside the FRS – Art 27	2
3	Material recovery – Soil Recovery Facilities	3
4	Delivery to inert waste facilities	4
5	Disposal on land – Non-hazardous landfills	5
6	Disposal on land – Abroad	6
7	Disposal at sea	7

 Table 8: Dredge material management option ranking

As described in Section 4.5 circa 70 to 90% of the dredge material can be accommodated through reuse or recovery with the remaining 10 to 30% to be disposed of at non-hazardous licenced landfill and hazardous disposal facilities.

6.1 Inert material management strategy

The dredge material management strategy for the dredge material is to follow the hierarchy of options to determine the most appropriate and sustainable solution for all dredge materials arising.

As stated in Section 4.4.1 approximately 70% of the dredge material comprises natural sands and gravels with no evidence of any contamination. In addition, approximately 20% of the natural sands and gravels have slightly elevated chloride concentrations due to the saline river environment. Testing has shown that these chloride levels will likely reduce following excavation and temporary storage on site. Retesting of these sands and gravels for chloride levels before removal will determine their destination, whether reuse, recovery or delivery to inert waste facilities.

Given that circa 70 to 90% of the dredge material will likely be inert sands and gravels the hierarchy of preferred dredge material management options are as follows:

- 1. Reuse within the Flood Relief Scheme where feasible.
- 2. Beneficial reuse outside the FRS as Article 27 by-product if suitable destination available.
- 3. Material recovery to appropriate Soil Recovery Facilities.
- 4. Delivery to inert waste facilities.

The actual destination of the dredge materials will somewhat depend on the availability of suitable facilities at the time of excavation. Specific suitable locations are identified below to provide confirmation that the management of all dredge materials will be in accordance with current best practice.

All dredge material may be subject to archaeological inspection prior to reuse, recovery or disposal. Any inspections could take place at the destination site or on site at an appropriately segregated area. Provisions are included within site compounds for the archaeological inspections to be undertaken within the working site areas before reuse or removal off-site.

6.1.1 **Reuse within the FRS**

The dredged natural sand and gravel material, including the material with slightly elevated chloride levels, can be reused on site without any treatment or storage necessary. The primary reuse option is the flood embankment along the edge of Arklow marsh. Further smaller volume options include as fill material for regrading works, backfill behind new flood walls and around new buried utility installations.

It is estimated that approximately 10,000m³ of material can be reused on site, with the remaining circa 73,600m³ of dredge material required to go offsite.

Accordingly, this option should be utilised first, followed by the next preferred option on the dredge material management option hierarchy.

6.1.2 Beneficial reuse outside the FRS – Article 27

Approximately 48,500m³ of the remaining material is suitable for beneficial reuse outside the FRS. The most sustainable off-site reuse option would be as a by-product under the EPA's Article 27 process. This material is likely to comply with Article 27 requirements. The material with slightly elevated chloride concentrations with a volume of 16,700m³ is also likely to be suitable for reuse under Article 27 provided chloride concentrations are reduced sufficiently through standard dredging operations.

The Article 27 process requires confirmation of an appropriate destination site with the capacity available when needed. There are potential Article 27 options including onshore for quarry infilling, coastal protection schemes, flood relief schemes, and for site restoration. For offshore options of reclamation or coastal protection schemes with works below the HWM, a foreshore license would also be required. Any option must have the required planning permission. At present Roadstone's Huntstown South quarry Article 27 facility has an available capacity in excess of 10 million m^3 , and is a viable option, but is some distance from Arklow. It is anticipated that more Article 27 site options will be available in the coming years.

Note that validation testing would be necessary to confirm the concentration of chlorides in the samples is appropriate for the chosen receiving sites.

6.1.3 Material recovery – Soil Recovery Facilities

As an alternative to any Article 27 options, there may be more appropriate recovery options closer to the source. As noted earlier there are many soil recovery facilities open at any point in time in the hinterland of Arklow, both in Wicklow and Wexford counties. These facilities are generally limited in annual intake and total capacity below 50,000m³, and acceptance of dredge material (waste code 17 05 06) must be included in the permit. It is reasonable to anticipate that there will be sufficient available capacity at the time required, to accept the remaining 48,500m³ plus 16,700m³ of natural sands and gravels at soil recovery facilities (SRFs) within close distance of Arklow.

Larger capacity sites are available also. Currently Roadstone are operating Huntstown Quarry in Co. Dublin as a soil recovery facility, with Calary in Co. Wicklow due to come on-line in the near future. Kilsaran also have local quarry which they intend using as a soil recovery (or possible inert waste facility) facility. Both these local sites would have capacity for the full remaining quantity described above.

6.1.4 Delivery to inert licenced landfills

In the unlikely event that neither Article 27 nor soil recovery facilities are available, the 48,500 m³ plus 16,700m³ of natural sands and gravels could be deposited in appropriate inert licenced landfills. Currently there are options available including:

- IMS Ltd, Hollywood, the Naul, Co. Dublin;
- Murphy Concrete Manufacturing, Gormanstown, Co. Meath;
- Walshestown Restoration Ltd., Walshestown, Co. Kildare.

Note that some validation testing will be necessary to confirm the appropriate concentration of chlorides in the material to confirm suitability prior to leaving site.

6.1.5 Disposal at sea

As noted above disposal-at-sea was first considered in 2008 on the basis that Wicklow County Council had a licensed facility, where Arklow harbour dredge material had previously been deposited. Key stakeholder consultations confirmed that while an option, it would most likely require a new license and require burial of the dredge material, if acceptable, under suitable capping. In accordance with the waste hierarchy defined under the EU Waste Framework Directive, and the EPA's own guidance for disposal of dredge material, disposal at sea is only to be considered if material cannot be reused, recycled or recovered.

As noted above the majority of dredge material is suitable for reuse, recovery or delivery to inert waste facilities. The hazardous material is not suitable for disposal at sea as a result of the material threshold exceedances.

For these reasons, while disposal at sea may be a viable disposal option for much of the dredge material, it is the least favoured option in this assessment.

6.2 Hazardous and non-hazardous material management strategy

The hazardous and non-hazardous material identified at the proposed dredging site can only be disposed-of within hazardous and non-hazardous facilities respectively.

6.2.1 Disposal on land – Non-hazardous licenced landfills

The circa 5,900m³ of non-hazardous material identified upstream of Arklow bridge will have to be disposed-of at a non-hazardous licenced landfill.

The following sites are currently accepting non-hazardous material:

- Drehid Waste Management Facility (Bord Na Mona), Co. Kildare;
- Knockharley Landfill, Co. Meath;
- Ballynagran Residual Landfill (Greenstar), Co. Wicklow.

The availability of non-hazardous landfill capacity has reduced in recent years, and those available taking mostly municipal waste. There is currently limited capacity for non-hazardous excavated and dredged soils, and this may continue into the future. However, given the ongoing need for such facilities, capacity for the relatively small volume arising from this scheme is considered likely. In the unlikely event there is no available capacity, exporting of this material would have to be considered. The dumping-at-sea option for the small volume of non-hazardous material is not considered feasible within the current constraints on existing and potential dumping sites.

6.2.2 Disposal on land – Abroad

The circa 2,500m³ of hazardous material identified upstream of Arklow bridge must be disposed-of at a hazardous licenced landfill. As there are currently no hazardous licenced landfills in Ireland it is likely that the material will need to be disposed of abroad at a suitable licenced waste facility. The transport of these materials abroad will require a trans-frontier shipment licence (TFS).

The transfer of this material will be handled by a specialist waste contractor.

This material may be subject to archaeological inspection prior to disposal. Any inspections could take place at the disposal site or on site at an appropriately segregated area. Note that given the hazardous nature of the soils, precautions will need to be put in place to protect the safety of the archaeologists carrying out the inspection. Measures will also need to be put in place to prevent inadvertent cross contamination of other soils present in the proposed holding area.

7 Conclusions

The purpose of this report is to recommend the dredge material management options for the dredging works that will be undertaken as part of the Arklow FRS.

This report has detailed the proposed works, the existing conditions including site investigation results, and the potential dredge material management options.

The classification and conservatively estimated volumes of the material to be dredged is summarised in Table 9.

Table 9: Material classification

Material classification	Percentage of total dredge material	Approximate volume (m ³)
Natural sands and gravels	70	58,500
Natural sands and gravels with slightly elevated chloride concentrations	20	16,700
Non-hazardous waste	7	5,900
Hazardous waste	3	2,500

The hazardous and non-hazardous waste material must be disposed of at hazardous and non-hazardous facilities respectively authorised under the Waste Management Act, 1996 as amended.

Chloride concentrations in sand and gravels with slightly elevated chloride levels are likely to reduce following temporary storage on site as a result of drainage and exposure to the weather. Subject to verification testing prior the material can be defined as inert material. These slightly elevated chloride levels are likely due to natural saline intrusion given the tidal influence on this section of river.

The inert sands and gravels are suitable for several viable material management options. In determining the preferred dredge material management options, the waste hierarchy defined under the EU Waste Framework Directive was applied. Accordingly, the preferred material management options are ranked as follows:

- 1. Reuse within the Flood Relief Scheme;
- 2. Beneficial reuse outside the FRS Article 27;
- 3. Material recovery Soil Recovery Facilities;
- 4. Delivery to inert waste facilities.

Note that the FRS will likely require a maximum of circa 10,000m³ of material for reuse.

The majority of the remaining material excluding the hazardous and non-hazardous material is likely to be suitable for reuse under the EPA's Article 27 process. Approximately 48,500m³ of the remaining material is suitable for beneficial reuse outside the FRS with an additional 16,700m³ with slightly elevated chloride concentrations also likely to be suitable provided chloride concentrations have reduced sufficiently.

The material has been assessed against TII Specification for Road Works, Series 600, Table 6/1 and complies with condition (d) of Article 27 and the EPA guidelines. The majority of the material falls within the Class 1A envelope of the TII specification with a small amount of material at BH01 falling under the Class 2A & 2B envelope.

The material is also suitable for acceptance at Soil Recovery Facilities and inert waste facilities.

The dredge material will be subject to an archaeological inspection regime as determined by the Department of Culture, Heritage and the Gaeltacht following consultation. The proposed dredge material management method will need to account for these requirements and will need to accommodate any inspections as required.

Construction site compounds and working areas will need to have sufficient capacity to accommodate the volume of material to be dredged. The areas will also need to be suitable to accommodate temporary storage of material and to allow for the archaeological inspection as required.

8 Recommended strategy

The dredge material should be managed according to the material classifications as detailed below:

- 1. Hazardous waste to be disposed of at an authorised hazardous treatment, recovery or disposal waste facility in Ireland or abroad;
- 2. Non-hazardous waste to be delivered to an authorised recovery or disposal waste facility in Ireland or abroad;
- 3. Material with slightly elevated chloride concentrations to be retained on site for reuse on site, the balance for beneficial reuse offsite (Article 27), delivery to SRFs or delivery to inert waste facilities subject to verification testing confirming chloride concentrations;
- 4. Inert sands and gravels to be reused within the FRS scheme, with the balance reused as by-product (Article 27), recovered at SRFs where feasible or delivered to inert waste facilities.

Hazardous wastes are likely to be disposed of abroad as there are no sites in Ireland currently accepting hazardous materials. There are limited sites currently accepting non-hazardous materials, and export would be a 'fall-back' option.

This strategy for dealing with the dredge materials forms the basis of the scheme to be submitted for planning permission, and for the associated Environmental Impact Assessment process. Note that final dredge material management options will be determined by the Contractor in accordance with the commitments made through the planning process and the viable options available at the time. This will follow consultation with the various stakeholders (i.e. EPA, WCC Waste Section, OPW), the Client (i.e. Wicklow County Council) and the Employer's Representative up to and including the tender process. This determination process will follow the waste hierarchy defined under the EU Waste Framework Directive as described in this report.

Appendix A

Ground Investigation data

A1 2008 Ground Investigation

1		0 80 160 320 480 640 Metres ARUP 50 Rinsend Road Dublin 4 Tel +353 (0) 1 233 4455 Fax +353 (0) 1 233 4455 Fax +353 (0) 1 668 3169 www.arup.ie	10 A
	Legend	Arup Consulting Engineers	
	BC1-6 Box Core Samples	Dublin 4 Ireland Produced using Geographical Information Systems)ı A
	 SS1-6 Surface Sediment Samples 	Tel:+353 (0)1 233 4455Fax:+353 (0)1 668 3169Ordnance Survey Ireland Licence No EN 0002807 ©Ordnance Survey Ireland and Government of Ireland	4
	 BS1-4 Bank Side Samples 		30

	···	JL (
	BE STAT	
H H H		
		J. ~ []
		X////
	Lang Curry	
	V SZAN	
	#~	
BC6	<u>`</u>	
	The state	
	119 E II	
Job Litle	lief	
	-	
Drawing Title	ent Contaminatio	n
Assessment	Sampling Points	/11
Scale at A3	Drawing No.	Revision
1:10,000	ž	Α

Final Report

Reported on:

12-Jun-2008

Report ID - 20008182 - 1

Eoghan Kieran Moore Group Corporate House Ballybrit Business Park Galway Ireland

Dear Eoghan

Please find attached the results for the batch of samples described below.

Samples taken on:	21-May-2008
Samples Registered on:	27-May-2008
Results for Batch Number	20008182

You will be invoiced shortly by our accounts department.

If we can be of further assistance then please do not hesitate to contact us.

Yours sincerely

William Fardon Customer Services Team Leader Tel: (0113) 231 2177 nls@environment-agency.gov.uk

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of analytical procedures and performance data are available on request. The date of sample analysis is available on request.

The Environment Agency carries out analytical work to high standards and within the scope of its UKAS accreditation, but has no knowledge of whether the circumstances or the validity of the procedures used to obtain the samples provided to the laboratory were representative of the need for which the information was required. The Environment Agency and/or its staff does not therefore accept any liability for the consequences of any acts or omissions made on the basis of the analysis or advice or interpretation provided.

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Page 1 of 8

Final Report

Report ID - 20008182 - 1

Reported on: 12-Jun-2008

Client:	Moore Group	Project:	Sediment Analysis
Folder No:	000666733	Sampled on:	21-May-08 @ 00:00
Comments:	BCA1 + BCA2		

	<u>Result</u>		<u>MRV</u>	Accred	Lab / Te	stCode
Grain Size Inclusive Kurtosis	0.46000000	mm	-12	UKAS	LI	994
Grain Size Inclusive Mean	4.05	mm	0	UKAS	LI	994
Inclusive Graphic Skewness :- {SKI}	-0.72000000	Unitless	-1	UKAS	LI	994
Grain Size Fraction : < 63 microns	0.00	%	0	UKAS	LI	994
Grain Size Fraction : < 20 microns	0.00	%	0	UKAS	LI	994
Grain Size Fraction : > 8000 microns	36.70	%	0	UKAS	LI	994
Grain Size Fraction : 1000 to 2000 microns	5.53	%	0	UKAS	LI	994
Grain Size Fraction : 125 to 249 microns	1.45	%	0	UKAS	LI	994
Grain Size Fraction : 2000 to 3999 microns	12.60	%	0	UKAS	LI	994
Grain Size Fraction : 250 to 499 microns	6.27	%	0	UKAS	LI	994
Grain Size : 4000 to 7999 microns	28.00	%	0	UKAS	LI	994
Grain Size Fraction : 500 to 999 microns	7.29	%	0	UKAS	LI	994
Grain Size Fraction : 63 to 125 microns	0.44	%	0	UKAS	LI	994
Kurtosis	-1.35000000	Unitless	-12	UKAS	LI	994
Particle Diameter : Mean	5.77	mm	0	UKAS	LI	994
Particle Diameter : Median	6.57	mm	0	UKAS	LI	994
Sorting Coefficient	1.48000000	Unitless	-3	UKAS	LI	994
Dry Solids @ 30°C	93.900	%	0.5	None	Le	924
Sample Preparation	1	Text		None	Le	924

Folder Number: 666733

The sample was received in a 11 plastic pot weighing approx. 764g in total.

The sample appeared to be a multicoloured gravel of pebbles and stones.

162.59g of the sample was taken for drying at <30degC which gave 153.08g of dried sample. The sample was sieved to <10mm before being crushed using a pestle and mortar and then sieved to <2mm.

27.04g of pebbles and stones was discarded after sieving at 10mm. The sample was received unpreserved.

All parameters are determined on the air-dried (<30degC) portion except those requiring a wet sample fraction where as received (wet) sample was used.

Dry Weight (DW) results are reported as determined at <30degC.

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN

Final Report

Report ID - 20008182 - 1

Reported on: 12-Jun-2008

Client:Moore GroupProject:Sediment AnalysisFolder No:000666734Sampled on:21-May-08 @ 00:00Comments:BC1A + BC1B

	Result		MRV	Accred	Lab / Te	stCode
Grain Size Inclusive Kurtosis	0.52000000	mm	-12	UKAS	LI	994
Grain Size Inclusive Mean	0.03	mm	0	UKAS	LI	994
Inclusive Graphic Skewness :- {SKI}	0.04000000	Unitless	-1	UKAS	LI	994
Grain Size Fraction : < 63 microns	65.60	%	0	UKAS	LI	994
Grain Size Fraction : < 20 microns	37.30	%	0	UKAS	LI	994
Grain Size Fraction : > 8000 microns	0.00	%	0	UKAS	LI	994
Grain Size Fraction : 1000 to 2000 microns	0.03	%	0	UKAS	LI	994
Grain Size Fraction : 125 to 249 microns	10.60	%	0	UKAS	LI	994
Grain Size Fraction : 2000 to 3999 microns	0.00	%	0	UKAS	LI	994
Grain Size Fraction : 250 to 499 microns	7.15	%	0	UKAS	LI	994
Grain Size : 4000 to 7999 microns	0.00	%	0	UKAS	LI	994
Grain Size Fraction : 500 to 999 microns	2.76	%	0	UKAS	LI	994
Grain Size Fraction : 63 to 125 microns	13.90	%	0	UKAS	LI	994
Kurtosis	-0.21000000	Unitless	-12	UKAS	LI	994
Particle Diameter : Mean	0.09	mm	0	UKAS	LI	994
Particle Diameter : Median	0.03	mm	0	UKAS	LI	994
Sorting Coefficient	2.15000000	Unitless	-3	UKAS	LI	994
Dry Solids @ 30°C	52.600	%	0.5	None	Le	924
Sample Preparation	1	Text		None	Le	924

Folder Number: 666734

The sample was received in a 11 plastic pot weighing approx. 353g in total.

The sample appeared to be a dark brown loamy clay with stones and roots present.

79.29g of the sample was taken for drying at <30degC which gave 44.41g of dried sample. The sample was sieved to <10mm before being crushed using a pestle and mortar and then sieved to <2mm.

No waste was discarded after sieving at 10mm.

The sample was received unpreserved.

All parameters are determined on the air-dried (<30degC) portion except those requiring a wet sample fraction where as received (wet) sample was used.

Dry Weight (DW) results are reported as determined at <30degC.

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN

Final Report

Reported on:

12-Jun-2008

Report ID - 20008182 - 1

Client:	Moore Group	Project:	Sediment Analysis
Folder No:	000666735	Sampled on:	21-May-08 @ 00:00
Comments:	BC2A-ONLY ONE SAMPLE FROM	STATION	

	Result		<u>MRV</u>	Accred	<u>Lab / Te</u>	<u>stCode</u>
Grain Size Inclusive Kurtosis	0.61000000	mm	-12	UKAS	LI	994
Grain Size Inclusive Mean	3.65	mm	0	UKAS	LI	994
Inclusive Graphic Skewness :- {SKI}	-0.7000000	Unitless	-1	UKAS	LI	994
Grain Size Fraction : < 63 microns	0.63	%	0	UKAS	LI	994
Grain Size Fraction : < 20 microns	0.02	%	0	UKAS	LI	994
Grain Size Fraction : > 8000 microns	37.30	%	0	UKAS	LI	994
Grain Size Fraction : 1000 to 2000 microns	10.60	%	0	UKAS	LI	994
Grain Size Fraction : 125 to 249 microns	1.77	%	0	UKAS	LI	994
Grain Size Fraction : 2000 to 3999 microns	11.50	%	0	UKAS	LI	994
Grain Size Fraction : 250 to 499 microns	4.34	%	0	UKAS	LI	994
Grain Size : 4000 to 7999 microns	18.00	%	0	UKAS	LI	994
Grain Size Fraction : 500 to 999 microns	12.70	%	0	UKAS	LI	994
Grain Size Fraction : 63 to 125 microns	0.41	%	0	UKAS	LI	994
Kurtosis	-1.63000000	Unitless	-12	UKAS	LI	994
Particle Diameter : Mean	5.38	mm	0	UKAS	LI	994
Particle Diameter : Median	6.29	mm	0	UKAS	LI	994
Sorting Coefficient	1.59000000	Unitless	-3	UKAS	LI	994
Dry Solids @ 30°C	88.200	%	0.5	None	Le	924
Sample Preparation	1	Text		None	Le	924

Folder Number: 666735

The sample was received in a 11 plastic pot weighing approx. 764g in total.

The sample appeared to be a multi-coloured gravel consisting of stones and pebbles.

115.26g of the sample was taken for drying at <30degC which gave 102.33g of dried sample. The sample was sieved to <10mm before being crushed using a pestle and mortar and then sieved to <2mm.

No waste was discarded after sieving at 10mm.

The sample was received unpreserved.

All parameters are determined on the air-dried (<30degC) portion except those requiring a wet sample fraction where as received (wet) sample was used.

Dry Weight (DW) results are reported as determined at <30degC.

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN

Final Report

Report ID - 20008182 - 1

Reported on: 12-Jun-2008

Client:	Moore Group	Project:	Sediment Analysis
Folder No:	000666736	Sampled on:	22-May-08 @ 00:00
Comments:	BC3A + BC3B		

	<u>Result</u>		MRV	Accred	Lab / Te	stCode
Grain Size Inclusive Kurtosis	0.36000000	mm	-12	UKAS	LI	994
Grain Size Inclusive Mean	0.20	mm	0	UKAS	LI	994
Inclusive Graphic Skewness :- {SKI}	-0.25000000	Unitless	-1	UKAS	LI	994
Grain Size Fraction : < 63 microns	14.60	%	0	UKAS	LI	994
Grain Size Fraction : < 20 microns	6.96	%	0	UKAS	LI	994
Grain Size Fraction : > 8000 microns	0.00	%	0	UKAS	LI	994
Grain Size Fraction : 1000 to 2000 microns	3.53	%	0	UKAS	LI	994
Grain Size Fraction : 125 to 249 microns	29.40	%	0	UKAS	LI	994
Grain Size Fraction : 2000 to 3999 microns	0.00	%	0	UKAS	LI	994
Grain Size Fraction : 250 to 499 microns	28.50	%	0	UKAS	LI	994
Grain Size : 4000 to 7999 microns	0.00	%	0	UKAS	LI	994
Grain Size Fraction : 500 to 999 microns	11.90	%	0	UKAS	LI	994
Grain Size Fraction : 63 to 125 microns	12.00	%	0	UKAS	LI	994
Kurtosis	5.99000000	Unitless	-12	UKAS	LI	994
Particle Diameter : Mean	0.30	mm	0	UKAS	LI	994
Particle Diameter : Median	0.22	mm	0	UKAS	LI	994
Sorting Coefficient	1.59000000	Unitless	-3	UKAS	LI	994
Dry Solids @ 30°C	67.200	%	0.5	None	Le	924
Sample Preparation	1	Text		None	Le	924

Folder Number: 666736

The sample was received in a 11 plastic pot weighing approx. 335g in total.

The sample appeared to be a dark brown clay sand with stones and roots present.

56.41g of the sample was taken for drying at <30degC which gave 39.81g of dried sample. The sample was sieved to <10mm before being crushed using a pestle and mortar and then sieved to <2mm.

No waste was discarded after sieving at 10mm.

The sample was received unpreserved.

All parameters are determined on the air-dried (<30degC) portion except those requiring a wet sample fraction where as received (wet) sample was used.

Dry Weight (DW) results are reported as determined at <30degC.

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN

Final Report

Report ID - 20008182 - 1

Reported on: 12-Jun-2008

Client:	Moore Group	Project:	Sediment Analysis
Folder No:	000666737	Sampled on:	22-May-08 @ 00:00
Comments:	BC44 + BC4B		

	Result		MRV	Accred	Lab / Te	stCode
Grain Size Inclusive Kurtosis	0.69000000	mm	-12	UKAS	LI	994
Grain Size Inclusive Mean	2.28	mm	0	UKAS	LI	994
Inclusive Graphic Skewness :- {SKI}	-0.17000000	Unitless	-1	UKAS	LI	994
Grain Size Fraction : < 63 microns	0.01	%	0	UKAS	LI	994
Grain Size Fraction : < 20 microns	0.00	%	0	UKAS	LI	994
Grain Size Fraction : > 8000 microns	32.90	%	0	UKAS	LI	994
Grain Size Fraction : 1000 to 2000 microns	7.67	%	0	UKAS	LI	994
Grain Size Fraction : 125 to 249 microns	1.64	%	0	UKAS	LI	994
Grain Size Fraction : 2000 to 3999 microns	5.44	%	0	UKAS	LI	994
Grain Size Fraction : 250 to 499 microns	13.60	%	0	UKAS	LI	994
Grain Size : 4000 to 7999 microns	11.80	%	0	UKAS	LI	994
Grain Size Fraction : 500 to 999 microns	24.50	%	0	UKAS	LI	994
Grain Size Fraction : 63 to 125 microns	0.67	%	0	UKAS	LI	994
Kurtosis	-1.68000000	Unitless	-12	UKAS	LI	994
Particle Diameter : Mean	4.36	mm	0	UKAS	LI	994
Particle Diameter : Median	2.57	mm	0	UKAS	LI	994
Sorting Coefficient	1.80000000	Unitless	-3	UKAS	LI	994
Dry Solids @ 30°C	75.000	%	0.5	None	Le	924
Sample Preparation	1	Text		None	Le	924

Folder Number: 666737

The sample was received in a 11 plastic pot weighing approx. 626g in total.

The sample appeared to be a dark brown, very wet, sand with grit present.

129.69g of the sample was taken for drying at <30degC which gave 96.37g of dried sample. The sample was sieved to <10mm before being crushed using a pestle and mortar and then sieved to <2mm.

5.58g of stones was discarded after sieving at 10mm.

The sample was received unpreserved.

All parameters are determined on the air-dried (<30degC) portion except those requiring a wet sample fraction where as received (wet) sample was used.

Dry Weight (DW) results are reported as determined at <30degC.

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN

Final Report

Report ID - 20008182 - 1

Reported on: 12-Jun-2008

Client:	Moore Group	Project:	Sediment Analysis
Folder No:	000666738	Sampled on:	22-May-08 @ 00:00
Comments:	BC5A + BC5B		

	<u>Result</u>		<u>MRV</u>	Accred	Lab / Te	stCode
Grain Size Inclusive Kurtosis	0.65000000	mm	-12	UKAS	LI	994
Grain Size Inclusive Mean	1.29	mm	0	UKAS	LI	994
Inclusive Graphic Skewness :- {SKI}	-0.05000000	Unitless	-1	UKAS	LI	994
Grain Size Fraction : < 63 microns	1.73	%	0	UKAS	LI	994
Grain Size Fraction : < 20 microns	0.25	%	0	UKAS	LI	994
Grain Size Fraction : > 8000 microns	20.20	%	0	UKAS	LI	994
Grain Size Fraction : 1000 to 2000 microns	8.17	%	0	UKAS	LI	994
Grain Size Fraction : 125 to 249 microns	13.50	%	0	UKAS	LI	994
Grain Size Fraction : 2000 to 3999 microns	9.69	%	0	UKAS	LI	994
Grain Size Fraction : 250 to 499 microns	12.00	%	0	UKAS	LI	994
Grain Size : 4000 to 7999 microns	14.60	%	0	UKAS	LI	994
Grain Size Fraction : 500 to 999 microns	13.70	%	0	UKAS	LI	994
Grain Size Fraction : 63 to 125 microns	5.82	%	0	UKAS	LI	994
Kurtosis	-1.12000000	Unitless	-12	UKAS	LI	994
Particle Diameter : Mean	3.34	mm	0	UKAS	LI	994
Particle Diameter : Median	1.26	mm	0	UKAS	LI	994
Sorting Coefficient	2.36000000	Unitless	-3	UKAS	LI	994
Dry Solids @ 30°C	52.600	%	0.5	None	Le	924
Sample Preparation	1	Text		None	Le	924

Folder Number: 666738

The sample was received in a 1l plastic pot weighing approx. 538g in total. The sample appeared to be a gritty, black sediment.

105.93g of the sample was taken for drying at <30degC which gave 58.47g of dried sample. The sample was sieved to <10mm before being crushed using a pestle and mortar and then sieved to <2mm.

1.40g of stones was discarded after sieving at 10mm.

The sample was received unpreserved.

All parameters are determined on the air-dried (<30degC) portion except those requiring a wet sample fraction where as received (wet) sample was used.

Dry Weight (DW) results are reported as determined at <30degC.

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN

Final Report

Reported on:

12-Jun-2008

Report ID - 20008182 - 1

Client:Moore GroupProject:Sediment AnalysisFolder No:000666739Sampled on:22-May-08 @ 00:00Comments:BC6A + BC6B

	<u>Result</u>		<u>MRV</u>	Accred	<u>Lab / Te</u>	<u>stCode</u>
Grain Size Inclusive Kurtosis	0.69000000	mm	-12	UKAS	LI	994
Grain Size Inclusive Mean	1.16	mm	0	UKAS	LI	994
Inclusive Graphic Skewness :- {SKI}	0.17000000	Unitless	-1	UKAS	LI	994
Grain Size Fraction : < 63 microns	2.80	%	0	UKAS	LI	994
Grain Size Fraction : < 20 microns	0.94	%	0	UKAS	LI	994
Grain Size Fraction : > 8000 microns	39.20	%	0	UKAS	LI	994
Grain Size Fraction : 1000 to 2000 microns	4.19	%	0	UKAS	LI	994
Grain Size Fraction : 125 to 249 microns	15.60	%	0	UKAS	LI	994
Grain Size Fraction : 2000 to 3999 microns	2.89	%	0	UKAS	LI	994
Grain Size Fraction : 250 to 499 microns	21.00	%	0	UKAS	LI	994
Grain Size : 4000 to 7999 microns	0.81	%	0	UKAS	LI	994
Grain Size Fraction : 500 to 999 microns	7.95	%	0	UKAS	LI	994
Grain Size Fraction : 63 to 125 microns	3.83	%	0	UKAS	LI	994
Kurtosis	-1.74000000	Unitless	-12	UKAS	LI	994
Particle Diameter : Mean	4.18	mm	0	UKAS	LI	994
Particle Diameter : Median	0.83	mm	0	UKAS	LI	994
Sorting Coefficient	2.39000000	Unitless	-3	UKAS	LI	994
Dry Solids @ 30°C	11.500	%	0.5	None	Le	924
Sample Preparation	1	Text		None	Le	924

Folder Number: 666739

The sample was received in a 1l plastic pot weighing approx. 727g in total.

The sample appeared to be oily, twigs, leaves and plant matter and a large quantity of water.

104.02g of the sample was taken for drying at <30degC which gave 17.07g of dried sample. The sample was sieved to <10mm before being crushed using a pestle and mortar and then sieved to <2mm.

No waste was discarded after sieving at 10mm.

The sample was received unpreserved.

All parameters are determined on the air-dried (<30degC) portion except those requiring a wet sample fraction where as received (wet) sample was used.

Dry Weight (DW) results are reported as determined at <30degC.

Key to Accreditation: UKAS = Methodology accredited to ISO/IEC 17025:2005, MCertS = Methodology accredited to MCertS Performance Standard for testing of soils, none = Methodology not accredited

Key to Lab Code: Le = Leeds, LI = Llanelli, No = Nottingham, Sx = Starcross, SC = Sub-Contracted outside NLS

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD

NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN

Final Report

Reported on:

24-Jun-2008

Report ID - 20008207 - 1

Eoghan Kieran Moore Marine Corporate House Ballybrit Business Park Galway Ireland

Dear Eoghan

Please find attached the results for the batch of samples described below.

Samples taken on:	21-May-2008
Samples Registered on:	28-May-2008
Results for Batch Number	20008207

You will be invoiced shortly by our accounts department.

If we can be of further assistance then please do not hesitate to contact us.

Yours sincerely

William Fardon Customer Services Team Leader Tel: (0113) 231 2177 nls@environment-agency.gov.uk

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of analytical procedures and performance data are available on request. The date of sample analysis is available on request.

The Environment Agency carries out analytical work to high standards and within the scope of its UKAS accreditation, but has no knowledge of whether the circumstances or the validity of the procedures used to obtain the samples provided to the laboratory were representative of the need for which the information was required.

The Environment Agency and/or its staff does not therefore accept any liability for the consequences of any acts or omissions made on the basis of the analysis or advice or interpretation provided.

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Page 1 of 43

Final Report

Reported on:

24-Jun-2008

Report ID - 20008207 - 1

Client:	Moore Marine	Project:	ct: Sediment Analysis					
Folder No:	000666712	Sampled on:	21-May-08 @ 00:00					
Comments:	Sand and Gravel - River Sample	SSA						
			Result		MRV	Accred	Lab / Te	stCode
Carbon : Dry \	Nt		3540.	mg/kg	1000	None	Le	606
Nitrogen : Dry	Wt as N		290.	mg/kg	200	None	Le	606
Total Organic	Carbon (TOC) : Dry Wt as C		< 0.800	%	0.8	UKAS	Le	535
Arsenic : Dry	Wt		3.66	mg/kg	1	UKAS	Le	914
Cadmium : Dr	y Wt		1.370	mg/kg	0.1	UKAS	Le	914
Chromium : D	ry Wt		29.800	mg/kg	0.1	UKAS	Le	914
Cobalt : Dry W	Vt		14.600	mg/kg	0.3	UKAS	Le	914
Copper : Dry \	Nt		20.500	mg/kg	0.1	UKAS	Le	914
Lead : Dry Wt			124.00	mg/kg	1	UKAS	Le	914
Manganese :	Dry Wt		2640.0000	mg/kg	0.05	UKAS	Le	914
Mercury : Dry	Wt		< 2.00	mg/kg	2	UKAS	Le	914
Nickel : Dry W	/t		26.300	mg/kg	0.3	UKAS	Le	914
Phosphorus :	Dry Wt		400.0	mg/kg	60	UKAS	Le	914
Zinc : Dry Wt			208.000	mg/kg	0.5	UKAS	Le	914
Sulphur, Free	: Dry Wt		< 10.0	mg/kg	10	UKAS	Le	912
Dibutyl Tin : D	ry Wt as cation		< 0.00300	mg/kg	0.003	UKAS	Le	897
Tributyl Tin : D	Dry Wt as cation		< 0.00300	mg/kg	0.003	UKAS	Le	897
Triphenyl Tin	: Dry Wt as cation		< 0.00200	mg/kg	0.002	UKAS	Le	897
Acenaphthene	e : Dry Wt		< 0.100	ug/kg	0.1	UKAS	Le	918
Acenaphthyle	ne : Dry Wt		< 1.00	ug/kg	1	UKAS	Le	918
Anthracene : [Dry Wt		< 20.0	ug/kg	20	UKAS	Le	918
Benzo(a)anthi	racene : Dry Wt		< 20.0	ug/kg	20	UKAS	Le	918
Benzo(a)pyrei	ne : Dry Wt		< 20.0	ug/kg	20	UKAS	Le	918
Benzo(ghi)per	ylene : Dry Wt		< 6.00	ug/kg	6	UKAS	Le	918
Benzo(k)fluora	anthene : Dry Wt		< 100.	ug/kg	100	UKAS	Le	918
Chrysene : Dr	y Wt		< 30.0	ug/kg	30	UKAS	Le	918
Dibenzo(ah)aı	nthracene : Dry Wt		< 3.00	ug/kg	3	UKAS	Le	918
Fluoranthene	: Dry Wt		< 20.0	ug/kg	20	UKAS	Le	918
Fluorene : Dry	/ Wt		< 10.0	ug/kg	10	UKAS	Le	918
HCH -gamma	: Dry Wt :- {Lindane}			ug/kg	2	UKAS	Le	918
Hexachlorobe	nzene : Dry Wt			ug/kg	0.9	UKAS	Le	918
Indeno(1,2,3c	d)pyrene : Dry Wt		< 30.0	ug/kg	30	UKAS	Le	918
Naphthalene :	Dry Wt		< 10.0	ug/kg	10	UKAS	Le	918
PCB - 008 : D	ry Wt		< 2.00	ug/kg	2	UKAS	Le	918
PCB - 020 : D	ry Wt		< 2.00	ug/kg	2	UKAS	Le	918

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

ENVIRONMENT AGENCY

Final Report

Report ID - 20008207 - 1

Reported on: 24-Jun-2008

PCB 28 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB - 035 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 52 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 077 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 101 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB - 105 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 118 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 126 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 128 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 138 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 149 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 153 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 156 : Dry Wt	< 0.900	ug/kg	0.9	UKAS	Le	918
PCB - 169 : Dry Wt	< 0.900	ug/kg	0.9	UKAS	Le	918
PCB - 170 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 180 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
Phenanthrene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Pyrene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Equiv.Carbon No >10-12 Aliphatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >10-12 Aromatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >12-16 Aliphatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >12-16 Aromatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >16-21 Aliphatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >16-21 Aromatic fraction : Dry Wt	< 400.	ug/kg	400	UKAS	Le	920
Equiv.Carbon No >21-35 Aliphatic fraction : Dry Wt	< 3000.	ug/kg	3000	UKAS	Le	920
Equiv.Carbon No >21-35 Aromatic fraction : Dry Wt	< 3000.	ug/kg	3000	UKAS	Le	920
Equiv.Carbon No >35-40 Aliphatic fraction : Dry Wt	< 900.	ug/kg	900	UKAS	Le	920
Equiv.Carbon No >35-40 Aromatic fraction : Dry Wt	< 3000.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Aliphatic extractable C10 - C40 : Dry Wt	< 3000.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Aromatic extractable C10 - C40 : Dry Wt	< 3000.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Total extractable C10 - C40 : Dry Wt {EPH}	< 4000.	ug/kg	4000	UKAS	Le	920
Dry Solids @ 30°C	83.400	%	0.5	None	Le	924
Sample Preparation	Report	Text		None	Le	924

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN

Final Report

Reported on:

24-Jun-2008

Report ID - 20008207 - 1

Folder Number: 666712

National

Service

Science, Service, Solutions

Laboratory

The sample was received in a 1kg plastic pot weighing approx. 1808g in total. The sample appeared to be a dark brown, very wet sediment with stones and shells present.

330.21g of the sample was taken for drying at <30degC which gave 276.35g of dried sample. The sample was sieved to <10mm before being crushed using a pestle and mortar and then sieved to <2mm.

No waste was discarded after sieving at 10mm. The sample was received unpreserved.

All parameters are determined on the air-dried (<30degC) portion except those requiring a wet sample fraction where as received (wet) sample was used.

Dry Weight (DW) results are reported as determined at <30degC.

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Page 4 of 43

Moore Marine

000666713

Client:

Folder No:

Analytical Report

Final Report

Reported on:

24-Jun-2008

918

918

Le

Le

Report ID - 20008207 - 1

Comments: Sand and Gravel - River Sample SSB						
	Result		MRV	Accred	Lab / Te	stCode
Carbon : Dry Wt	4440.	mg/kg	1000	None	Le	606
Nitrogen : Dry Wt as N	490.	mg/kg	200	None	Le	606
Total Organic Carbon (TOC) : Dry Wt as C	< 0.800	%	0.8	UKAS	Le	535
Arsenic : Dry Wt	15.80	mg/kg	1	UKAS	Le	914
Cadmium : Dry Wt	0.459	mg/kg	0.1	UKAS	Le	914
Chromium : Dry Wt	30.400	mg/kg	0.1	UKAS	Le	914
Cobalt : Dry Wt	10.300	mg/kg	0.3	UKAS	Le	914
Copper : Dry Wt	187.000	mg/kg	0.1	UKAS	Le	914
Lead : Dry Wt	124.00	mg/kg	1	UKAS	Le	914
Manganese : Dry Wt	1580.0000	mg/kg	0.05	UKAS	Le	914
Mercury : Dry Wt	< 2.00	mg/kg	2	UKAS	Le	914
Nickel : Dry Wt	22.700	mg/kg	0.3	UKAS	Le	914
Phosphorus : Dry Wt	454.0	mg/kg	60	UKAS	Le	914
Zinc : Dry Wt	163.000	mg/kg	0.5	UKAS	Le	914
Sulphur, Free : Dry Wt	< 10.0	mg/kg	10	UKAS	Le	912
Dibutyl Tin : Dry Wt as cation	< 0.00400	mg/kg	0.003	UKAS	Le	897
Tributyl Tin : Dry Wt as cation	< 0.00400	mg/kg	0.003	UKAS	Le	897
Triphenyl Tin : Dry Wt as cation	< 0.00200	mg/kg	0.002	UKAS	Le	897
Acenaphthene : Dry Wt	< 0.100	ug/kg	0.1	UKAS	Le	918
Acenaphthylene : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
Anthracene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Benzo(a)anthracene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Benzo(a)pyrene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Benzo(ghi)perylene : Dry Wt	< 6.00	ug/kg	6	UKAS	Le	918
Benzo(k)fluoranthene : Dry Wt	< 100.	ug/kg	100	UKAS	Le	918
Chrysene : Dry Wt	< 30.0	ug/kg	30	UKAS	Le	918
Dibenzo(ah)anthracene : Dry Wt	< 3.00	ug/kg	3	UKAS	Le	918
Fluoranthene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Fluorene : Dry Wt	< 10.0	ug/kg	10	UKAS	Le	918
HCH -gamma : Dry Wt :- {Lindane}		ug/kg	2	UKAS	Le	918
Hexachlorobenzene : Dry Wt		ug/kg	0.9	UKAS	Le	918
Indeno(1,2,3cd)pyrene : Dry Wt	< 30.0	ug/kg	30	UKAS	Le	918
Naphthalene : Dry Wt	< 10.0	ug/kg	10	UKAS	Le	918

Project: Sediment Analysis

Sampled on: 21-May-08 @ 00:00

PCB - 008 : Dry Wt

PCB - 020 : Dry Wt

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD

NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN

NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

< 2.00

< 2.00

2

2

ug/kg

ug/kg

ENVIRONMENT AGENCY

UKAS

UKAS

Final Report

Report ID - 20008207 - 1

Reported on: 24-Jun-2008

PCB 28 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB - 035 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 52 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 077 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 101 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB - 105 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 118 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 126 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 128 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 138 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 149 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 153 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 156 : Dry Wt	< 0.900	ug/kg	0.9	UKAS	Le	918
PCB - 169 : Dry Wt	< 0.900	ug/kg	0.9	UKAS	Le	918
PCB - 170 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 180 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
Phenanthrene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Pyrene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Equiv.Carbon No >10-12 Aliphatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >10-12 Aromatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >12-16 Aliphatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >12-16 Aromatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >16-21 Aliphatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >16-21 Aromatic fraction : Dry Wt	< 400.	ug/kg	400	UKAS	Le	920
Equiv.Carbon No >21-35 Aliphatic fraction : Dry Wt	< 3000.	ug/kg	3000	UKAS	Le	920
Equiv.Carbon No >21-35 Aromatic fraction : Dry Wt	< 3000.	ug/kg	3000	UKAS	Le	920
Equiv.Carbon No >35-40 Aliphatic fraction : Dry Wt	< 900.	ug/kg	900	UKAS	Le	920
Equiv.Carbon No >35-40 Aromatic fraction : Dry Wt	< 3000.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Aliphatic extractable C10 - C40 : Dry Wt	< 3000.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Aromatic extractable C10 - C40 : Dry Wt	< 3000.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Total extractable C10 - C40 : Dry Wt {EPH}	< 4000.	ug/kg	4000	UKAS	Le	920
Dry Solids @ 30°C	79.900	%	0.5	None	Le	924
Sample Preparation	Report	Text		None	Le	924

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN

Final Report

Reported on: 24-Jun-2008

Report ID - 20008207 - 1

Folder Number: 666713

National

Service

Science, Service, Solutions

Laboratory

The sample was received in a 1kg plastic pot weighing approx. 1555g in total. The sample appeared to be a medium brown, very wet sediment with stones and shells present.

263.57g of the sample was taken for drying at <30degC which gave 211.57g of dried sample. The sample was sieved to <10mm before being crushed using a pestle and mortar and then sieved to <2mm.

No waste was discarded after sieving at 10mm. The sample was received unpreserved.

All parameters are determined on the air-dried (<30degC) portion except those requiring a wet sample fraction where as received (wet) sample was used.

Dry Weight (DW) results are reported as determined at <30degC.

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Page 7 of 43

Moore Marine

Client:

Analytical Report

Final Report

Reported on:

24-Jun-2008

Report ID - 20008207 - 1

Folder No:	000666714	Sampled on:	21-May-08 @	00:00				
Comments:	Sand and Gravel - River Sampl	e SSC						
			Result		<u>MRV</u>	Accred	<u>Lab / Te</u>	stCode
Carbon : Dry	Wt		5380.	mg/kg	1000	None	Le	606
Nitrogen : Dry	y Wt as N		470.	mg/kg	200	None	Le	606
Total Organic	: Carbon (TOC) : Dry Wt as C		< 0.800	%	0.8	UKAS	Le	535
Arsenic : Dry	Wt		< 1.00	mg/kg	1	UKAS	Le	914
Cadmium : D	ry Wt		0.236	mg/kg	0.1	UKAS	Le	914
Chromium : D	Dry Wt		17.800	mg/kg	0.1	UKAS	Le	914
Cobalt : Dry V	Nt		11.600	mg/kg	0.3	UKAS	Le	914
Copper : Dry	Wt		12.000	mg/kg	0.1	UKAS	Le	914
Lead : Dry W	t		15.80	mg/kg	1	UKAS	Le	914
Manganese :	Dry Wt		1140.0000	mg/kg	0.05	UKAS	Le	914
Mercury : Dry	' Wt		< 2.00	mg/kg	2	UKAS	Le	914
Nickel : Dry V	Vt		18.100	mg/kg	0.3	UKAS	Le	914
Phosphorus :	Dry Wt		327.0	mg/kg	60	UKAS	Le	914
Zinc : Dry Wt			82.200	mg/kg	0.5	UKAS	Le	914
Sulphur, Free	e : Dry Wt		< 10.0	mg/kg	10	UKAS	Le	912
Dibutyl Tin : [Dry Wt as cation		< 0.00400	mg/kg	0.003	UKAS	Le	897
Tributyl Tin :	Dry Wt as cation		< 0.00400	mg/kg	0.003	UKAS	Le	897
Triphenyl Tin	: Dry Wt as cation		< 0.00300	mg/kg	0.002	UKAS	Le	897
Acenaphthen	e : Dry Wt		< 0.100	ug/kg	0.1	UKAS	Le	918
Acenaphthyle	ene : Dry Wt		< 1.00	ug/kg	1	UKAS	Le	918
Anthracene :	Dry Wt		< 20.0	ug/kg	20	UKAS	Le	918
Benzo(a)anth	racene : Dry Wt		< 20.0	ug/kg	20	UKAS	Le	918
Benzo(a)pyre	ene : Dry Wt		< 20.0	ug/kg	20	UKAS	Le	918
Benzo(ghi)pe	rylene : Dry Wt		< 6.00	ug/kg	6	UKAS	Le	918
Benzo(k)fluor	anthene : Dry Wt		< 100.	ug/kg	100	UKAS	Le	918
Chrysene : D	ry Wt		< 30.0	ug/kg	30	UKAS	Le	918
Dibenzo(ah)a	inthracene : Dry Wt		< 3.00	ug/kg	3	UKAS	Le	918
Fluoranthene	: Dry Wt		< 20.0	ug/kg	20	UKAS	Le	918
Fluorene : Dr	y Wt		< 10.0	ug/kg	10	UKAS	Le	918
HCH -gamma	a : Dry Wt :- {Lindane}			ug/kg	2	UKAS	Le	918
Hexachlorobe	enzene : Dry Wt			ug/kg	0.9	UKAS	Le	918
Indeno(1,2,3d	cd)pyrene : Dry Wt		< 30.0	ug/kg	30	UKAS	Le	918
Naphthalene	: Dry Wt		< 10.0	ug/kg	10	UKAS	Le	918
PCB - 008 : D	Dry Wt		< 2.00	ug/kg	2	UKAS	Le	918
PCB - 020 : D	Dry Wt		< 2.00	ug/kg	2	UKAS	Le	918

Project: Sediment Analysis

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

ENVIRONMENT AGENCY

Final Report

Report ID - 20008207 - 1

Reported on: 24-Jun-2008

PCB 28 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB - 035 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 52 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 077 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 101 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB - 105 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 118 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 126 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 128 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 138 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 149 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 153 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 156 : Dry Wt	< 0.900	ug/kg	0.9	UKAS	Le	918
PCB - 169 : Dry Wt	< 0.900	ug/kg	0.9	UKAS	Le	918
PCB - 170 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 180 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
Phenanthrene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Pyrene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Equiv.Carbon No >10-12 Aliphatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >10-12 Aromatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >12-16 Aliphatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >12-16 Aromatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >16-21 Aliphatic fraction : Dry Wt	415.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >16-21 Aromatic fraction : Dry Wt	621.	ug/kg	400	UKAS	Le	920
Equiv.Carbon No >21-35 Aliphatic fraction : Dry Wt	< 3000.	ug/kg	3000	UKAS	Le	920
Equiv.Carbon No >21-35 Aromatic fraction : Dry Wt	< 3000.	ug/kg	3000	UKAS	Le	920
Equiv.Carbon No >35-40 Aliphatic fraction : Dry Wt	< 900.	ug/kg	900	UKAS	Le	920
Equiv.Carbon No >35-40 Aromatic fraction : Dry Wt	< 3000.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Aliphatic extractable C10 - C40 : Dry Wt	< 3000.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Aromatic extractable C10 - C40 : Dry Wt	< 3000.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Total extractable C10 - C40 : Dry Wt {EPH}	< 4000.	ug/kg	4000	UKAS	Le	920
Dry Solids @ 30°C	69.000	%	0.5	None	Le	924
Sample Preparation	Report	Text		None	Le	924

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Page 9 of 43

Report ID - 20008207 - 1

Final Report

Reported on:

24-Jun-2008

National

Service

Science, Service, Solutions

Laboratory

Folder Number: 666714 The sample was received in a 1kg plastic pot weighing approx. 1892g in total.

The sample appeared to be a medium brown, very wet sediment with stones and shells present.

237.22g of the sample was taken for drying at <30degC which gave 165.55g of dried sample. The sample was sieved to <10mm before being crushed using a pestle and mortar and then sieved to <2mm.

No waste was discarded after sieving at 10mm. The sample was received unpreserved.

All parameters are determined on the air-dried (<30degC) portion except those requiring a wet sample fraction where as received (wet) sample was used.

Dry Weight (DW) results are reported as determined at <30degC.

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Page 10 of 43

Moore Marine

Client:

_

Analytical Report

Final Report

Reported on:

24-Jun-2008

Report ID - 20008207 - 1

Folder No:	000666715 5	Sampled on:	21-May-08 @	00:00				
Comments:	Sand and Gravel - River Sample SSE)						
			Result		<u>MRV</u>	Accred	Lab / Te	stCode
Carbon : Dry	Wt		24800.	mg/kg	1000	None	Le	606
Nitrogen : Dry	y Wt as N		1650.	mg/kg	200	None	Le	606
Total Organic	c Carbon (TOC) : Dry Wt as C		2.390	%	0.8	UKAS	Le	535
Arsenic : Dry	Wt		24.30	mg/kg	1	UKAS	Le	914
Cadmium : D	ry Wt		1.030	mg/kg	0.1	UKAS	Le	914
Chromium : D	Dry Wt		21.800	mg/kg	0.1	UKAS	Le	914
Cobalt : Dry \	Nt		13.500	mg/kg	0.3	UKAS	Le	914
Copper : Dry	Wt		252.000	mg/kg	0.1	UKAS	Le	914
Lead : Dry W	t		137.00	mg/kg	1	UKAS	Le	914
Manganese :	Dry Wt		1430.0000	mg/kg	0.05	UKAS	Le	914
Mercury : Dry	/ Wt		< 2.00	mg/kg	2	UKAS	Le	914
Nickel : Dry V	Vt		21.000	mg/kg	0.3	UKAS	Le	914
Phosphorus :	Dry Wt		579.0	mg/kg	60	UKAS	Le	914
Zinc : Dry Wt			293.000	mg/kg	0.5	UKAS	Le	914
Sulphur, Free	e : Dry Wt		< 10.0	mg/kg	10	UKAS	Le	912
Dibutyl Tin : [Dry Wt as cation		< 0.00700	mg/kg	0.003	UKAS	Le	897
Tributyl Tin :	Dry Wt as cation		< 0.00700	mg/kg	0.003	UKAS	Le	897
Triphenyl Tin	: Dry Wt as cation		< 0.00500	mg/kg	0.002	UKAS	Le	897
Acenaphthen	e : Dry Wt		3.300	ug/kg	0.1	UKAS	Le	918
Acenaphthyle	ene : Dry Wt		3.80	ug/kg	1	UKAS	Le	918
Anthracene :	Dry Wt		< 20.0	ug/kg	20	UKAS	Le	918
Benzo(a)anth	rracene : Dry Wt		66.0	ug/kg	20	UKAS	Le	918
Benzo(a)pyre	ene : Dry Wt		28.0	ug/kg	20	UKAS	Le	918
Benzo(ghi)pe	rylene : Dry Wt		36.00	ug/kg	6	UKAS	Le	918
Benzo(k)fluor	anthene : Dry Wt		< 100.	ug/kg	100	UKAS	Le	918
Chrysene : D	ry Wt		74.0	ug/kg	30	UKAS	Le	918
Dibenzo(ah)a	anthracene : Dry Wt		5.30	ug/kg	3	UKAS	Le	918
Fluoranthene	: Dry Wt		110.0	ug/kg	20	UKAS	Le	918
Fluorene : Dr	y Wt		< 10.0	ug/kg	10	UKAS	Le	918
HCH -gamma	a : Dry Wt :- {Lindane}			ug/kg	2	UKAS	Le	918
Hexachlorobe	enzene : Dry Wt			ug/kg	0.9	UKAS	Le	918
Indeno(1,2,3d	cd)pyrene : Dry Wt		< 30.0	ug/kg	30	UKAS	Le	918
Naphthalene	: Dry Wt		< 10.0	ug/kg	10	UKAS	Le	918
PCB - 008 : E	Dry Wt		< 2.00	ug/kg	2	UKAS	Le	918

Project: Sediment Analysis

PCB - 020 : Dry Wt

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD

NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN

NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

< 2.00

2

ug/kg

ENVIRONMENT AGENCY

Le

918

UKAS

Final Report

Report ID - 20008207 - 1

Reported on: 24-Jun-2008

PCB 28 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB - 035 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 52 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 077 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 101 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB - 105 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 118 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 126 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 128 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 138 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 149 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 153 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 156 : Dry Wt	< 0.900	ug/kg	0.9	UKAS	Le	918
PCB - 169 : Dry Wt	< 0.900	ug/kg	0.9	UKAS	Le	918
PCB - 170 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 180 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
Phenanthrene : Dry Wt	23.0	ug/kg	20	UKAS	Le	918
Pyrene : Dry Wt	100.0	ug/kg	20	UKAS	Le	918
Equiv.Carbon No >10-12 Aliphatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >10-12 Aromatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >12-16 Aliphatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >12-16 Aromatic fraction : Dry Wt	1190.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >16-21 Aliphatic fraction : Dry Wt	1450.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >16-21 Aromatic fraction : Dry Wt	3220.	ug/kg	400	UKAS	Le	920
Equiv.Carbon No >21-35 Aliphatic fraction : Dry Wt	18700.	ug/kg	3000	UKAS	Le	920
Equiv.Carbon No >21-35 Aromatic fraction : Dry Wt	44000.	ug/kg	3000	UKAS	Le	920
Equiv.Carbon No >35-40 Aliphatic fraction : Dry Wt	< 900.	ug/kg	900	UKAS	Le	920
Equiv.Carbon No >35-40 Aromatic fraction : Dry Wt	17200.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Aliphatic extractable C10 - C40 : Dry Wt	20900.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Aromatic extractable C10 - C40 : Dry Wt	65700.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Total extractable C10 - C40 : Dry Wt {EPH}	86600.	ug/kg	4000	UKAS	Le	920
Dry Solids @ 30°C	40.600	%	0.5	None	Le	924
Sample Preparation	Report	Text		None	Le	924

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Final Report

Reported on:

24-Jun-2008

Report ID - 20008207 - 1

Folder Number: 666715

National

Service

Science, Service, Solutions

Laboratory

The sample was received in a 1kg plastic pot weighing approx. 1503g in total. The sample appeared to be a medium brown, very wet sediment with stones and shells present.

210.43g of the sample was taken for drying at <30degC which gave 88.93g of dried sample. The sample was sieved to <10mm before being crushed using a pestle and mortar and then sieved to <2mm.

No waste was discarded after sieving at 10mm. The sample was received unpreserved.

All parameters are determined on the air-dried (<30degC) portion except those requiring a wet sample fraction where as received (wet) sample was used.

Dry Weight (DW) results are reported as determined at <30degC.

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Page 13 of 43

Final Report

Reported on: 24-Jun-2008

Report ID - 20008207 - 1

Client: Moore Marine Folder No: SS1 Comments:

000666716

Project: Sediment Analysis

Sampled on: 22-May-08 @ 00:00

	Result		<u>MRV</u>	Accred	<u>Lab / Te</u>	stCode
Carbon : Dry Wt	2180.	mg/kg	1000	None	Le	606
Nitrogen : Dry Wt as N	270.	mg/kg	200	None	Le	606
Total Organic Carbon (TOC) : Dry Wt as C	< 0.800	%	0.8	UKAS	Le	535
Arsenic : Dry Wt	7.61	mg/kg	1	UKAS	Le	914
Cadmium : Dry Wt	0.425	mg/kg	0.1	UKAS	Le	914
Chromium : Dry Wt	18.600	mg/kg	0.1	UKAS	Le	914
Cobalt : Dry Wt	11.300	mg/kg	0.3	UKAS	Le	914
Copper : Dry Wt	42.100	mg/kg	0.1	UKAS	Le	914
Lead : Dry Wt	58.00	mg/kg	1	UKAS	Le	914
Manganese : Dry Wt	1300.0000	mg/kg	0.05	UKAS	Le	914
Mercury : Dry Wt	< 2.00	mg/kg	2	UKAS	Le	914
Nickel : Dry Wt	19.800	mg/kg	0.3	UKAS	Le	914
Phosphorus : Dry Wt	321.0	mg/kg	60	UKAS	Le	914
Zinc : Dry Wt	199.000	mg/kg	0.5	UKAS	Le	914
Sulphur, Free : Dry Wt	< 10.0	mg/kg	10	UKAS	Le	912
Dibutyl Tin : Dry Wt as cation	< 0.00400	mg/kg	0.003	UKAS	Le	897
Tributyl Tin : Dry Wt as cation	< 0.00400	mg/kg	0.003	UKAS	Le	897
Triphenyl Tin : Dry Wt as cation	< 0.00300	mg/kg	0.002	UKAS	Le	897
Acenaphthene : Dry Wt	< 0.100	ug/kg	0.1	UKAS	Le	918
Acenaphthylene : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
Anthracene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Benzo(a)anthracene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Benzo(a)pyrene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Benzo(ghi)perylene : Dry Wt	< 6.00	ug/kg	6	UKAS	Le	918
Benzo(k)fluoranthene : Dry Wt	< 100.	ug/kg	100	UKAS	Le	918
Chrysene : Dry Wt	< 30.0	ug/kg	30	UKAS	Le	918
Dibenzo(ah)anthracene : Dry Wt	< 3.00	ug/kg	3	UKAS	Le	918
Fluoranthene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Fluorene : Dry Wt	< 10.0	ug/kg	10	UKAS	Le	918
HCH -gamma : Dry Wt :- {Lindane}	< 2.00	ug/kg	2	UKAS	Le	918
Hexachlorobenzene : Dry Wt	< 0.900	ug/kg	0.9	UKAS	Le	918
Indeno(1,2,3cd)pyrene : Dry Wt	< 30.0	ug/kg	30	UKAS	Le	918
Naphthalene : Dry Wt	< 10.0	ug/kg	10	UKAS	Le	918
PCB - 008 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB - 020 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN

NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

ENVIRONMENT AGENCY

Final Report

Report ID - 20008207 - 1

Reported on: 24-Jun-2008

PCB 28 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB - 035 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 52 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 077 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 101 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB - 105 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 118 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 126 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 128 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 138 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 149 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 153 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 156 : Dry Wt	< 0.900	ug/kg	0.9	UKAS	Le	918
PCB - 169 : Dry Wt	< 0.900	ug/kg	0.9	UKAS	Le	918
PCB - 170 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 180 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
Phenanthrene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Pyrene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Equiv.Carbon No >10-12 Aliphatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >10-12 Aromatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >12-16 Aliphatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >12-16 Aromatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >16-21 Aliphatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >16-21 Aromatic fraction : Dry Wt	< 400.	ug/kg	400	UKAS	Le	920
Equiv.Carbon No >21-35 Aliphatic fraction : Dry Wt	< 3000.	ug/kg	3000	UKAS	Le	920
Equiv.Carbon No >21-35 Aromatic fraction : Dry Wt	< 3000.	ug/kg	3000	UKAS	Le	920
Equiv.Carbon No >35-40 Aliphatic fraction : Dry Wt	< 900.	ug/kg	900	UKAS	Le	920
Equiv.Carbon No >35-40 Aromatic fraction : Dry Wt	< 3000.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Aliphatic extractable C10 - C40 : Dry Wt	< 3000.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Aromatic extractable C10 - C40 : Dry Wt	< 3000.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Total extractable C10 - C40 : Dry Wt {EPH}	< 4000.	ug/kg	4000	UKAS	Le	920
Dry Solids @ 30°C	76.600	%	0.5	None	Le	924
Sample Preparation	Report	Text		None	Le	924

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Final Report

Reported on:

24-Jun-2008

Report ID - 20008207 - 1

Folder Number: 666716

National

Service

Science, Service, Solutions

Laboratory

The sample was received in a 1kg plastic pot weighing approx. 1085g in total. The sample appeared to be a medium brown, very wet sediment with stones and sand present.

298.13g of the sample was taken for drying at <30degC which gave 229.57g of dried sample. The sample was sieved to <10mm before being crushed using a pestle and mortar and then sieved to <2mm.

No waste was discarded after sieving at 10mm. The sample was received unpreserved.

All parameters are determined on the air-dried (<30degC) portion except those requiring a wet sample fraction where as received (wet) sample was used.

Dry Weight (DW) results are reported as determined at <30degC.

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Page 16 of 43

Final Report

Reported on:

24-Jun-2008

Report ID - 20008207 - 1

Client: Moore Marine Folder No: SS2 Comments:

000666717

Project: Sediment Analysis Sampled on: 22-May-08 @ 00:00

	<u>Result</u>		<u>MRV</u>	Accred	Lab / Tes	stCode
Carbon : Dry Wt	5450.	mg/kg	1000	None	Le	606
Nitrogen : Dry Wt as N	520.	mg/kg	200	None	Le	606
Total Organic Carbon (TOC) : Dry Wt as C	< 0.800	%	0.8	UKAS	Le	535
Arsenic : Dry Wt	10.30	mg/kg	1	UKAS	Le	914
Cadmium : Dry Wt	0.325	mg/kg	0.1	UKAS	Le	914
Chromium : Dry Wt	24.100	mg/kg	0.1	UKAS	Le	914
Cobalt : Dry Wt	8.840	mg/kg	0.3	UKAS	Le	914
Copper : Dry Wt	78.000	mg/kg	0.1	UKAS	Le	914
Lead : Dry Wt	64.90	mg/kg	1	UKAS	Le	914
Manganese : Dry Wt	1140.0000	mg/kg	0.05	UKAS	Le	914
Mercury : Dry Wt	< 2.00	mg/kg	2	UKAS	Le	914
Nickel : Dry Wt	23.100	mg/kg	0.3	UKAS	Le	914
Phosphorus : Dry Wt	357.0	mg/kg	60	UKAS	Le	914
Zinc : Dry Wt	241.000	mg/kg	0.5	UKAS	Le	914
Sulphur, Free : Dry Wt	22.2	mg/kg	10	UKAS	Le	912
Dibutyl Tin : Dry Wt as cation	< 0.00300	mg/kg	0.003	UKAS	Le	897
Tributyl Tin : Dry Wt as cation	< 0.00300	mg/kg	0.003	UKAS	Le	897
Triphenyl Tin : Dry Wt as cation	< 0.00200	mg/kg	0.002	UKAS	Le	897
Acenaphthene : Dry Wt	< 0.100	ug/kg	0.1	UKAS	Le	918
Acenaphthylene : Dry Wt	3.50	ug/kg	1	UKAS	Le	918
Anthracene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Benzo(a)anthracene : Dry Wt	25.0	ug/kg	20	UKAS	Le	918
Benzo(a)pyrene : Dry Wt	29.0	ug/kg	20	UKAS	Le	918
Benzo(ghi)perylene : Dry Wt	20.00	ug/kg	6	UKAS	Le	918
Benzo(k)fluoranthene : Dry Wt	< 100.	ug/kg	100	UKAS	Le	918
Chrysene : Dry Wt	< 30.0	ug/kg	30	UKAS	Le	918
Dibenzo(ah)anthracene : Dry Wt	5.70	ug/kg	3	UKAS	Le	918
Fluoranthene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Fluorene : Dry Wt	< 10.0	ug/kg	10	UKAS	Le	918
HCH -gamma : Dry Wt :- {Lindane}		ug/kg	2	UKAS	Le	918
Hexachlorobenzene : Dry Wt		ug/kg	0.9	UKAS	Le	918
Indeno(1,2,3cd)pyrene : Dry Wt	< 30.0	ug/kg	30	UKAS	Le	918
Naphthalene : Dry Wt	< 10.0	ug/kg	10	UKAS	Le	918
PCB - 008 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB - 020 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN

NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

ENVIRONMENT AGENCY

Final Report

Report ID - 20008207 - 1

Reported on: 24-Jun-2008

PCB 28 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB - 035 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 52 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 077 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 101 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB - 105 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 118 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 126 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 128 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 138 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 149 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 153 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 156 : Dry Wt	< 0.900	ug/kg	0.9	UKAS	Le	918
PCB - 169 : Dry Wt	< 0.900	ug/kg	0.9	UKAS	Le	918
PCB - 170 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 180 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
Phenanthrene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Pyrene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Equiv.Carbon No >10-12 Aliphatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >10-12 Aromatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >12-16 Aliphatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >12-16 Aromatic fraction : Dry Wt	327.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >16-21 Aliphatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >16-21 Aromatic fraction : Dry Wt	998.	ug/kg	400	UKAS	Le	920
Equiv.Carbon No >21-35 Aliphatic fraction : Dry Wt	< 3000.	ug/kg	3000	UKAS	Le	920
Equiv.Carbon No >21-35 Aromatic fraction : Dry Wt	< 3000.	ug/kg	3000	UKAS	Le	920
Equiv.Carbon No >35-40 Aliphatic fraction : Dry Wt	< 900.	ug/kg	900	UKAS	Le	920
Equiv.Carbon No >35-40 Aromatic fraction : Dry Wt	< 3000.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Aliphatic extractable C10 - C40 : Dry Wt	< 3000.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Aromatic extractable C10 - C40 : Dry Wt	4440.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Total extractable C10 - C40 : Dry Wt {EPH}	5940.	ug/kg	4000	UKAS	Le	920
Dry Solids @ 30°C	84.600	%	0.5	None	Le	924
Sample Preparation	Report	Text		None	Le	924

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Final Report

Reported on:

24-Jun-2008

Report ID - 20008207 - 1

Folder Number:666717

National

Service

Science, Service, Solutions

Laboratory

The sample was received in a 1l plastic pot weighing approx. 1695g in total. The sample appeared to be a dark brown sandy sediment.

311.17g of the sample was taken for drying at <30degC which gave 264.11g of dried sample. The sample was sieved to <10mm before being crushed using a pestle and mortar and then sieved to <2mm.

115.23g of pebbles was discarded after sieving at 10mm. The sample was received unpreserved.

All parameters are determined on the air-dried (<30degC) portion except those requiring a wet sample fraction where as received (wet) sample was used.

Dry Weight (DW) results are reported as determined at <30degC.

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Page 19 of 43

Final Report

Reported on:

24-Jun-2008

Report ID - 20008207 - 1

Client: Moore Marine Folder No: SS3 Comments:

000666718

Project: Sediment Analysis Sampled on: 22-May-08 @ 00:00

	Result		MRV	Accred	Lab / Tes	tCode
Carbon : Dry Wt	4480.	mg/kg	1000	None	Le	606
Nitrogen : Dry Wt as N	470.	mg/kg	200	None	Le	606
Total Organic Carbon (TOC) : Dry Wt as C	< 0.800	%	0.8	UKAS	Le	535
Arsenic : Dry Wt	7.86	mg/kg	1	UKAS	Le	914
Cadmium : Dry Wt	0.665	mg/kg	0.1	UKAS	Le	914
Chromium : Dry Wt	24.000	mg/kg	0.1	UKAS	Le	914
Cobalt : Dry Wt	10.500	mg/kg	0.3	UKAS	Le	914
Copper : Dry Wt	136.000	mg/kg	0.1	UKAS	Le	914
Lead : Dry Wt	69.90	mg/kg	1	UKAS	Le	914
Manganese : Dry Wt	940.0000	mg/kg	0.05	UKAS	Le	914
Mercury : Dry Wt	< 2.00	mg/kg	2	UKAS	Le	914
Nickel : Dry Wt	21.900	mg/kg	0.3	UKAS	Le	914
Phosphorus : Dry Wt	401.0	mg/kg	60	UKAS	Le	914
Zinc : Dry Wt	306.000	mg/kg	0.5	UKAS	Le	914
Sulphur, Free : Dry Wt	48.6	mg/kg	10	UKAS	Le	912
Dibutyl Tin : Dry Wt as cation	< 0.00400	mg/kg	0.003	UKAS	Le	897
Tributyl Tin : Dry Wt as cation	< 0.00400	mg/kg	0.003	UKAS	Le	897
Triphenyl Tin : Dry Wt as cation	< 0.00300	mg/kg	0.002	UKAS	Le	897
Acenaphthene : Dry Wt	1.000	ug/kg	0.1	UKAS	Le	918
Acenaphthylene : Dry Wt	1.30	ug/kg	1	UKAS	Le	918
Anthracene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Benzo(a)anthracene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Benzo(a)pyrene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Benzo(ghi)perylene : Dry Wt	8.40	ug/kg	6	UKAS	Le	918
Benzo(k)fluoranthene : Dry Wt	< 100.	ug/kg	100	UKAS	Le	918
Chrysene : Dry Wt	< 30.0	ug/kg	30	UKAS	Le	918
Dibenzo(ah)anthracene : Dry Wt	< 3.00	ug/kg	3	UKAS	Le	918
Fluoranthene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Fluorene : Dry Wt	< 10.0	ug/kg	10	UKAS	Le	918
HCH -gamma : Dry Wt :- {Lindane}		ug/kg	2	UKAS	Le	918
Hexachlorobenzene : Dry Wt		ug/kg	0.9	UKAS	Le	918
Indeno(1,2,3cd)pyrene : Dry Wt	< 30.0	ug/kg	30	UKAS	Le	918
Naphthalene : Dry Wt	< 10.0	ug/kg	10	UKAS	Le	918
PCB - 008 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB - 020 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN

NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

ENVIRONMENT AGENCY

Page 20 of 43

Final Report

Report ID - 20008207 - 1

Reported on: 24-Jun-2008

PCB 28 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB - 035 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 52 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 077 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 101 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB - 105 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 118 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 126 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 128 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 138 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 149 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 153 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 156 : Dry Wt	< 0.900	ug/kg	0.9	UKAS	Le	918
PCB - 169 : Dry Wt	< 0.900	ug/kg	0.9	UKAS	Le	918
PCB - 170 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 180 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
Phenanthrene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Pyrene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Equiv.Carbon No >10-12 Aliphatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >10-12 Aromatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >12-16 Aliphatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >12-16 Aromatic fraction : Dry Wt	532.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >16-21 Aliphatic fraction : Dry Wt	2310.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >16-21 Aromatic fraction : Dry Wt	10500.	ug/kg	400	UKAS	Le	920
Equiv.Carbon No >21-35 Aliphatic fraction : Dry Wt	3860.	ug/kg	3000	UKAS	Le	920
Equiv.Carbon No >21-35 Aromatic fraction : Dry Wt	11900.	ug/kg	3000	UKAS	Le	920
Equiv.Carbon No >35-40 Aliphatic fraction : Dry Wt	< 900.	ug/kg	900	UKAS	Le	920
Equiv.Carbon No >35-40 Aromatic fraction : Dry Wt	6790.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Aliphatic extractable C10 - C40 : Dry Wt	6920.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Aromatic extractable C10 - C40 : Dry Wt	29900.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Total extractable C10 - C40 : Dry Wt {EPH}	36800.	ug/kg	4000	UKAS	Le	920
Dry Solids @ 30°C	73.700	%	0.5	None	Le	924
Sample Preparation	Report	Text		None	Le	924

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Page 21 of 43

Final Report

Reported on:

24-Jun-2008

Report ID - 20008207 - 1

Folder Number:666718

National

Service

Science, Service, Solutions

Laboratory

The sample was received in a 1l plastic pot weighing approx. 789g in total. The sample appeared to be a dark brown sandy sediment.

206.00g of the sample was taken for drying at <30degC which gave 153.33g of dried sample. The sample was sieved to <10mm before being crushed using a pestle and mortar and then sieved to <2mm.

No waste was discarded after sieving at 10mm. The sample was received unpreserved.

All parameters are determined on the air-dried (<30degC) portion except those requiring a wet sample fraction where as received (wet) sample was used.

Dry Weight (DW) results are reported as determined at <30degC.

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Page 22 of 43

Final Report

Reported on:

24-Jun-2008

Report ID - 20008207 - 1

Client: Moore Marine Folder No: SS4 Comments:

000666719

Project: Sediment Analysis Sampled on: 22-May-08 @ 00:00

	<u>Result</u>		<u>MRV</u>	Accred	Lab / Te:	stCode
Carbon : Dry Wt	10500.	mg/kg	1000	None	Le	606
Nitrogen : Dry Wt as N	970.	mg/kg	200	None	Le	606
Total Organic Carbon (TOC) : Dry Wt as C	0.940	%	0.8	UKAS	Le	535
Arsenic : Dry Wt	< 1.00	mg/kg	1	UKAS	Le	914
Cadmium : Dry Wt	0.153	mg/kg	0.1	UKAS	Le	914
Chromium : Dry Wt	17.300	mg/kg	0.1	UKAS	Le	914
Cobalt : Dry Wt	6.110	mg/kg	0.3	UKAS	Le	914
Copper : Dry Wt	101.000	mg/kg	0.1	UKAS	Le	914
Lead : Dry Wt	57.90	mg/kg	1	UKAS	Le	914
Manganese : Dry Wt	702.0000	mg/kg	0.05	UKAS	Le	914
Mercury : Dry Wt	< 2.00	mg/kg	2	UKAS	Le	914
Nickel : Dry Wt	18.000	mg/kg	0.3	UKAS	Le	914
Phosphorus : Dry Wt	405.0	mg/kg	60	UKAS	Le	914
Zinc : Dry Wt	218.000	mg/kg	0.5	UKAS	Le	914
Sulphur, Free : Dry Wt	81.1	mg/kg	10	UKAS	Le	912
Dibutyl Tin : Dry Wt as cation	< 0.00400	mg/kg	0.003	UKAS	Le	897
Tributyl Tin : Dry Wt as cation	< 0.00400	mg/kg	0.003	UKAS	Le	897
Triphenyl Tin : Dry Wt as cation	< 0.00300	mg/kg	0.002	UKAS	Le	897
Acenaphthene : Dry Wt	1.400	ug/kg	0.1	UKAS	Le	918
Acenaphthylene : Dry Wt	2.90	ug/kg	1	UKAS	Le	918
Anthracene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Benzo(a)anthracene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Benzo(a)pyrene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Benzo(ghi)perylene : Dry Wt	11.00	ug/kg	6	UKAS	Le	918
Benzo(k)fluoranthene : Dry Wt	< 100.	ug/kg	100	UKAS	Le	918
Chrysene : Dry Wt	< 30.0	ug/kg	30	UKAS	Le	918
Dibenzo(ah)anthracene : Dry Wt	< 3.00	ug/kg	3	UKAS	Le	918
Fluoranthene : Dry Wt	23.0	ug/kg	20	UKAS	Le	918
Fluorene : Dry Wt	< 10.0	ug/kg	10	UKAS	Le	918
HCH -gamma : Dry Wt :- {Lindane}		ug/kg	2	UKAS	Le	918
Hexachlorobenzene : Dry Wt		ug/kg	0.9	UKAS	Le	918
Indeno(1,2,3cd)pyrene : Dry Wt	< 30.0	ug/kg	30	UKAS	Le	918
Naphthalene : Dry Wt	< 10.0	ug/kg	10	UKAS	Le	918
PCB - 008 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB - 020 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN

NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

ENVIRONMENT AGENCY

Page 23 of 43

Final Report

Report ID - 20008207 - 1

Reported on: 24-Jun-2008

PCB 28 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB - 035 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 52 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 077 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 101 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB - 105 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 118 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 126 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 128 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 138 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 149 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 153 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 156 : Dry Wt	< 0.900	ug/kg	0.9	UKAS	Le	918
PCB - 169 : Dry Wt	< 0.900	ug/kg	0.9	UKAS	Le	918
PCB - 170 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 180 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
Phenanthrene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Pyrene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Equiv.Carbon No >10-12 Aliphatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >10-12 Aromatic fraction : Dry Wt	367.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >12-16 Aliphatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >12-16 Aromatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >16-21 Aliphatic fraction : Dry Wt	421.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >16-21 Aromatic fraction : Dry Wt	3840.	ug/kg	400	UKAS	Le	920
Equiv.Carbon No >21-35 Aliphatic fraction : Dry Wt	< 3000.	ug/kg	3000	UKAS	Le	920
Equiv.Carbon No >21-35 Aromatic fraction : Dry Wt	< 3000.	ug/kg	3000	UKAS	Le	920
Equiv.Carbon No >35-40 Aliphatic fraction : Dry Wt	< 900.	ug/kg	900	UKAS	Le	920
Equiv.Carbon No >35-40 Aromatic fraction : Dry Wt	< 3000.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Aliphatic extractable C10 - C40 : Dry Wt	< 3000.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Aromatic extractable C10 - C40 : Dry Wt	7430.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Total extractable C10 - C40 : Dry Wt {EPH}	8930.	ug/kg	4000	UKAS	Le	920
Dry Solids @ 30°C	83.900	%	0.5	None	Le	924
Sample Preparation	Report	Text		None	Le	924

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Page 24 of 43

Final Report

Reported on:

24-Jun-2008

Report ID - 20008207 - 1

Folder Number:666719

National

Service

Science, Service, Solutions

Laboratory

The sample was received in a 1I plastic pot weighing approx. 981g in total.

The sample appeared to be a very wet dark brown sandy sediment lots of stones present.

268.75g of the sample was taken for drying at <30degC which gave 226.31g of dried sample. The sample was sieved to <10mm before being crushed using a pestle and mortar and then sieved to <2mm.

75.10g of pebbles was discarded after sieving at 10mm. The sample was received unpreserved.

All parameters are determined on the air-dried (<30degC) portion except those requiring a wet sample fraction where as received (wet) sample was used.

Dry Weight (DW) results are reported as determined at <30degC.

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Page 25 of 43

Final Report

Reported on: 24-Jun-2008

Report ID - 20008207 - 1

Client: Moore Marine Folder No: SS5 Comments:

000666720

Project: Sediment Analysis Sampled on: 22-May-08 @ 00:00

	Result		<u>MRV</u>	Accred	Lab / Tes	stCode
Carbon : Dry Wt	2180.	mg/kg	1000	None	Le	606
Nitrogen : Dry Wt as N	< 200.	mg/kg	200	None	Le	606
Total Organic Carbon (TOC) : Dry Wt as C	< 0.800	%	0.8	UKAS	Le	535
Arsenic : Dry Wt	< 1.00	mg/kg	1	UKAS	Le	914
Cadmium : Dry Wt	0.185	mg/kg	0.1	UKAS	Le	914
Chromium : Dry Wt	21.500	mg/kg	0.1	UKAS	Le	914
Cobalt : Dry Wt	5.160	mg/kg	0.3	UKAS	Le	914
Copper : Dry Wt	31.500	mg/kg	0.1	UKAS	Le	914
Lead : Dry Wt	30.10	mg/kg	1	UKAS	Le	914
Manganese : Dry Wt	1020.0000	mg/kg	0.05	UKAS	Le	914
Mercury : Dry Wt	< 2.00	mg/kg	2	UKAS	Le	914
Nickel : Dry Wt	17.700	mg/kg	0.3	UKAS	Le	914
Phosphorus : Dry Wt	382.0	mg/kg	60	UKAS	Le	914
Zinc : Dry Wt	132.000	mg/kg	0.5	UKAS	Le	914
Sulphur, Free : Dry Wt	1540.0	mg/kg	10	UKAS	Le	912
Dibutyl Tin : Dry Wt as cation	< 0.00400	mg/kg	0.003	UKAS	Le	897
Tributyl Tin : Dry Wt as cation	< 0.00400	mg/kg	0.003	UKAS	Le	897
Triphenyl Tin : Dry Wt as cation	< 0.00200	mg/kg	0.002	UKAS	Le	897
Acenaphthene : Dry Wt	< 0.100	ug/kg	0.1	UKAS	Le	918
Acenaphthylene : Dry Wt	1.90	ug/kg	1	UKAS	Le	918
Anthracene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Benzo(a)anthracene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Benzo(a)pyrene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Benzo(ghi)perylene : Dry Wt	< 6.00	ug/kg	6	UKAS	Le	918
Benzo(k)fluoranthene : Dry Wt	< 100.	ug/kg	100	UKAS	Le	918
Chrysene : Dry Wt	< 30.0	ug/kg	30	UKAS	Le	918
Dibenzo(ah)anthracene : Dry Wt	< 3.00	ug/kg	3	UKAS	Le	918
Fluoranthene : Dry Wt	32.0	ug/kg	20	UKAS	Le	918
Fluorene : Dry Wt	< 10.0	ug/kg	10	UKAS	Le	918
HCH -gamma : Dry Wt :- {Lindane}		ug/kg	2	UKAS	Le	918
Hexachlorobenzene : Dry Wt		ug/kg	0.9	UKAS	Le	918
Indeno(1,2,3cd)pyrene : Dry Wt	< 30.0	ug/kg	30	UKAS	Le	918
Naphthalene : Dry Wt	< 10.0	ug/kg	10	UKAS	Le	918
PCB - 008 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB - 020 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN

NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

ENVIRONMENT AGENCY

Final Report

Report ID - 20008207 - 1

Reported on: 24-Jun-2008

PCB 28 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB - 035 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 52 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 077 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 101 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB - 105 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 118 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 126 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 128 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 138 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 149 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 153 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 156 : Dry Wt	< 0.900	ug/kg	0.9	UKAS	Le	918
PCB - 169 : Dry Wt	< 0.900	ug/kg	0.9	UKAS	Le	918
PCB - 170 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 180 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
Phenanthrene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Pyrene : Dry Wt	35.0	ug/kg	20	UKAS	Le	918
Equiv.Carbon No >10-12 Aliphatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >10-12 Aromatic fraction : Dry Wt	308.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >12-16 Aliphatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >12-16 Aromatic fraction : Dry Wt	313.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >16-21 Aliphatic fraction : Dry Wt	817.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >16-21 Aromatic fraction : Dry Wt	32200.	ug/kg	400	UKAS	Le	920
Equiv.Carbon No >21-35 Aliphatic fraction : Dry Wt	< 3000.	ug/kg	3000	UKAS	Le	920
Equiv.Carbon No >21-35 Aromatic fraction : Dry Wt	7960.	ug/kg	3000	UKAS	Le	920
Equiv.Carbon No >35-40 Aliphatic fraction : Dry Wt	< 900.	ug/kg	900	UKAS	Le	920
Equiv.Carbon No >35-40 Aromatic fraction : Dry Wt	< 3000.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Aliphatic extractable C10 - C40 : Dry Wt	3070.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Aromatic extractable C10 - C40 : Dry Wt	41900.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Total extractable C10 - C40 : Dry Wt {EPH}	45000.	ug/kg	4000	UKAS	Le	920
Dry Solids @ 30°C	85.300	%	0.5	None	Le	924
Sample Preparation	Report	Text		None	Le	924

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Page 27 of 43

Final Report

Reported on:

24-Jun-2008

Report ID - 20008207 - 1

Folder Number:666720

National

Service

Science, Service, Solutions

Laboratory

The sample was received in a 1l plastic pot weighing approx. 634g in total. The sample appeared to be a very wet dark brown sediment with stones present.

200.93g of the sample was taken for drying at <30degC which gave 172.26g of dried sample. The sample was sieved to <10mm before being crushed using a pestle and mortar and then sieved to <2mm.

No waste was discarded after sieving at 10mm. The sample was received unpreserved.

All parameters are determined on the air-dried (<30degC) portion except those requiring a wet sample fraction where as received (wet) sample was used.

Dry Weight (DW) results are reported as determined at <30degC.

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Page 28 of 43

Final Report

Reported on: 24-Jun-2008

Report ID - 20008207 - 1

Client: Moore Marine Folder No: SS6 Comments:

000666721

Project: Sediment Analysis Sampled on: 22-May-08 @ 00:00

	Result		MRV	Accred	Lab / Tes	stCode
Carbon : Dry Wt	23900.	mg/kg	1000	None	Le	606
Nitrogen : Dry Wt as N	1570.	mg/kg	200	None	Le	606
Total Organic Carbon (TOC) : Dry Wt as C	5.540	%	0.8	UKAS	Le	535
Arsenic : Dry Wt	6.95	mg/kg	1	UKAS	Le	914
Cadmium : Dry Wt	0.814	mg/kg	0.1	UKAS	Le	914
Chromium : Dry Wt	17.900	mg/kg	0.1	UKAS	Le	914
Cobalt : Dry Wt	6.720	mg/kg	0.3	UKAS	Le	914
Copper : Dry Wt	71.200	mg/kg	0.1	UKAS	Le	914
Lead : Dry Wt	79.10	mg/kg	1	UKAS	Le	914
Manganese : Dry Wt	505.0000	mg/kg	0.05	UKAS	Le	914
Mercury : Dry Wt	< 2.00	mg/kg	2	UKAS	Le	914
Nickel : Dry Wt	15.500	mg/kg	0.3	UKAS	Le	914
Phosphorus : Dry Wt	571.0	mg/kg	60	UKAS	Le	914
Zinc : Dry Wt	254.000	mg/kg	0.5	UKAS	Le	914
Sulphur, Free : Dry Wt	2340.0	mg/kg	10	UKAS	Le	912
Dibutyl Tin : Dry Wt as cation	< 0.01000	mg/kg	0.003	UKAS	Le	897
Tributyl Tin : Dry Wt as cation	< 0.01000	mg/kg	0.003	UKAS	Le	897
Triphenyl Tin : Dry Wt as cation	< 0.00900	mg/kg	0.002	UKAS	Le	897
Acenaphthene : Dry Wt	2.200	ug/kg	0.1	UKAS	Le	918
Acenaphthylene : Dry Wt	3.60	ug/kg	1	UKAS	Le	918
Anthracene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Benzo(a)anthracene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Benzo(a)pyrene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Benzo(ghi)perylene : Dry Wt	10.00	ug/kg	6	UKAS	Le	918
Benzo(k)fluoranthene : Dry Wt	< 100.	ug/kg	100	UKAS	Le	918
Chrysene : Dry Wt	< 30.0	ug/kg	30	UKAS	Le	918
Dibenzo(ah)anthracene : Dry Wt	< 3.00	ug/kg	3	UKAS	Le	918
Fluoranthene : Dry Wt	25.0	ug/kg	20	UKAS	Le	918
Fluorene : Dry Wt	< 10.0	ug/kg	10	UKAS	Le	918
HCH -gamma : Dry Wt :- {Lindane}		ug/kg	2	UKAS	Le	918
Hexachlorobenzene : Dry Wt		ug/kg	0.9	UKAS	Le	918
Indeno(1,2,3cd)pyrene : Dry Wt	< 30.0	ug/kg	30	UKAS	Le	918
Naphthalene : Dry Wt	19.0	ug/kg	10	UKAS	Le	918
PCB - 008 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB - 020 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN

NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

ENVIRONMENT AGENCY

Page 29 of 43

Final Report

Report ID - 20008207 - 1

Reported on: 24-Jun-2008

PCB 28 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB - 035 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 52 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 077 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 101 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB - 105 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 118 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 126 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 128 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 138 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 149 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 153 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 156 : Dry Wt	< 0.900	ug/kg	0.9	UKAS	Le	918
PCB - 169 : Dry Wt	< 0.900	ug/kg	0.9	UKAS	Le	918
PCB - 170 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 180 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
Phenanthrene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Pyrene : Dry Wt	22.0	ug/kg	20	UKAS	Le	918
Equiv.Carbon No >10-12 Aliphatic fraction : Dry Wt	767.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >10-12 Aromatic fraction : Dry Wt	1010.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >12-16 Aliphatic fraction : Dry Wt	715.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >12-16 Aromatic fraction : Dry Wt	3360.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >16-21 Aliphatic fraction : Dry Wt	26600.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >16-21 Aromatic fraction : Dry Wt	< 400.	ug/kg	400	UKAS	Le	920
Equiv.Carbon No >21-35 Aliphatic fraction : Dry Wt	11600.	ug/kg	3000	UKAS	Le	920
Equiv.Carbon No >21-35 Aromatic fraction : Dry Wt	68300.	ug/kg	3000	UKAS	Le	920
Equiv.Carbon No >35-40 Aliphatic fraction : Dry Wt	3420.	ug/kg	900	UKAS	Le	920
Equiv.Carbon No >35-40 Aromatic fraction : Dry Wt	7860.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Aliphatic extractable C10 - C40 : Dry Wt	43000.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Aromatic extractable C10 - C40 : Dry Wt	80600.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Total extractable C10 - C40 : Dry Wt {EPH}	124000.	ug/kg	4000	UKAS	Le	920
Dry Solids @ 30°C	24.500	%	0.5	None	Le	924
Sample Preparation	Report	Text		None	Le	924

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Page 30 of 43

Final Report

Reported on:

24-Jun-2008

Report ID - 20008207 - 1

Folder Number:666721

National

Service

Science, Service, Solutions

Laboratory

The sample was received in a 1l plastic pot weighing approx. 1198g in total. The sample appeared to be a wet, black loam with lots of organic material present.

173.69g of the sample was taken for drying at <30degC which gave 46.93g of dried sample. The sample was sieved to <10mm before being crushed using a pestle and mortar and then sieved to <2mm.

13.43g of pebbles was discarded after sieving at 10mm. The sample was received unpreserved.

All parameters are determined on the air-dried (<30degC) portion except those requiring a wet sample fraction where as received (wet) sample was used.

Dry Weight (DW) results are reported as determined at <30degC.

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Page 31 of 43

Final Report

Reported on:

24-Jun-2008

Report ID - 20008207 - 1

Client: Moore Marine Folder No: BS1 Comments:

000666722

Project: Sediment Analysis Sampled on: 21-May-08 @ 00:00

	<u>Result</u>		<u>MRV</u>	Accred	Lab / Tes	tCode
Carbon : Dry Wt	58600.	mg/kg	1000	None	Le	606
Nitrogen : Dry Wt as N	3550.	mg/kg	200	None	Le	606
Total Organic Carbon (TOC) : Dry Wt as C	3.200	%	0.8	MCertS	Le	535
Arsenic : Dry Wt	7.05	mg/kg	1	UKAS	Le	914
Cadmium : Dry Wt	1.520	mg/kg	0.1	MCertS	Le	914
Chromium : Dry Wt	25.300	mg/kg	0.1	MCertS	Le	914
Cobalt : Dry Wt	13.500	mg/kg	0.3	MCertS	Le	914
Copper : Dry Wt	118.000	mg/kg	0.1	MCertS	Le	914
Lead : Dry Wt	140.00	mg/kg	1	MCertS	Le	914
Manganese : Dry Wt	796.0000	mg/kg	0.05	MCertS	Le	914
Mercury : Dry Wt	< 2.00	mg/kg	2	MCertS	Le	914
Nickel : Dry Wt	26.500	mg/kg	0.3	MCertS	Le	914
Phosphorus : Dry Wt	699.0	mg/kg	60	UKAS	Le	914
Zinc : Dry Wt	360.000	mg/kg	0.5	MCertS	Le	914
Sulphur, Free : Dry Wt	70.5	mg/kg	10	MCertS	Le	912
Dibutyl Tin : Dry Wt as cation	< 0.00700	mg/kg	0.003	MCertS	Le	897
Tributyl Tin : Dry Wt as cation	< 0.00700	mg/kg	0.003	MCertS	Le	897
Triphenyl Tin : Dry Wt as cation	< 0.00500	mg/kg	0.002	MCertS	Le	897
Acenaphthene : Dry Wt	17.000	ug/kg	0.1	MCertS	Le	918
Acenaphthylene : Dry Wt	23.00	ug/kg	1	MCertS	Le	918
Anthracene : Dry Wt	53.0	ug/kg	20	MCertS	Le	918
Benzo(a)anthracene : Dry Wt	430.0	ug/kg	20	MCertS	Le	918
Benzo(a)pyrene : Dry Wt	340.0	ug/kg	20	MCertS	Le	918
Benzo(ghi)perylene : Dry Wt	190.00	ug/kg	6	MCertS	Le	918
Benzo(k)fluoranthene : Dry Wt	290.	ug/kg	100	MCertS	Le	918
Chrysene : Dry Wt	410.0	ug/kg	30	MCertS	Le	918
Dibenzo(ah)anthracene : Dry Wt	37.00	ug/kg	3	MCertS	Le	918
Fluoranthene : Dry Wt	810.0	ug/kg	20	MCertS	Le	918
Fluorene : Dry Wt	12.0	ug/kg	10	MCertS	Le	918
HCH -gamma : Dry Wt :- {Lindane}		ug/kg	2	UKAS	Le	918
Hexachlorobenzene : Dry Wt		ug/kg	0.9	UKAS	Le	918
Indeno(1,2,3cd)pyrene : Dry Wt	180.0	ug/kg	30	MCertS	Le	918
Naphthalene : Dry Wt	40.0	ug/kg	10	MCertS	Le	918
PCB - 008 : Dry Wt	< 2.00	ug/kg	2	MCertS	Le	918
PCB - 020 : Dry Wt	< 2.00	ug/kg	2	MCertS	Le	918
		-				

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN

NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Final Report

Report ID - 20008207 - 1

Reported on: 24-Jun-2008

PCB 28 : Dry Wt	< 2.00	ug/kg	2	MCertS	Le	918
PCB - 035 : Dry Wt	< 2.00	ug/kg	2	MCertS	Le	918
PCB 52 : Dry Wt	< 1.00	ug/kg	1	MCertS	Le	918
PCB - 077 : Dry Wt	< 2.00	ug/kg	2	MCertS	Le	918
PCB 101 : Dry Wt	< 2.00	ug/kg	2	MCertS	Le	918
PCB - 105 : Dry Wt	< 1.00	ug/kg	1	MCertS	Le	918
PCB 118 : Dry Wt	< 1.00	ug/kg	1	MCertS	Le	918
PCB - 126 : Dry Wt	< 1.00	ug/kg	1	MCertS	Le	918
PCB - 128 : Dry Wt	< 1.00	ug/kg	1	MCertS	Le	918
PCB 138 : Dry Wt	< 1.00	ug/kg	1	MCertS	Le	918
PCB - 149 : Dry Wt	< 1.00	ug/kg	1	MCertS	Le	918
PCB 153 : Dry Wt	< 1.00	ug/kg	1	MCertS	Le	918
PCB - 156 : Dry Wt	< 0.900	ug/kg	0.9	MCertS	Le	918
PCB - 169 : Dry Wt	< 0.900	ug/kg	0.9	MCertS	Le	918
PCB - 170 : Dry Wt	< 2.00	ug/kg	2	MCertS	Le	918
PCB 180 : Dry Wt	< 1.00	ug/kg	1	MCertS	Le	918
Phenanthrene : Dry Wt	140.0	ug/kg	20	MCertS	Le	918
Pyrene : Dry Wt	670.0	ug/kg	20	MCertS	Le	918
Equiv.Carbon No >10-12 Aliphatic fraction : Dry Wt	301.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >10-12 Aromatic fraction : Dry Wt	500.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >12-16 Aliphatic fraction : Dry Wt	1180.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >12-16 Aromatic fraction : Dry Wt	6520.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >16-21 Aliphatic fraction : Dry Wt	2400.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >16-21 Aromatic fraction : Dry Wt	27100.	ug/kg	400	UKAS	Le	920
Equiv.Carbon No >21-35 Aliphatic fraction : Dry Wt	46200.	ug/kg	3000	UKAS	Le	920
Equiv.Carbon No >21-35 Aromatic fraction : Dry Wt	229000.	ug/kg	3000	UKAS	Le	920
Equiv.Carbon No >35-40 Aliphatic fraction : Dry Wt	1450.	ug/kg	900	UKAS	Le	920
Equiv.Carbon No >35-40 Aromatic fraction : Dry Wt	88000.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Aliphatic extractable C10 - C40 : Dry Wt	51500.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Aromatic extractable C10 - C40 : Dry Wt	351000.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Total extractable C10 - C40 : Dry Wt {EPH}	402000.	ug/kg	4000	MCertS	Le	920
Dry Solids @ 30°C	40.100	%	0.5	None	Le	924
Sample Preparation	Report	Text		None	Le	924

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Page 33 of 43

Final Report

Reported on: 24-Jun-2008

Report ID - 20008207 - 1

Folder Number: 666722

National

Service

Science, Service, Solutions

Laboratory

The sample was received in a 1kg plastic pot weighing approx. 843g in total.

The sample appeared to be a medium brown, sandy loam with leaves and plant matter present.

160.26g of the sample was taken for drying at <30degC which gave 67.66g of dried sample. The sample was sieved to <10mm before being crushed using a pestle and mortar and then sieved to <2mm.

6.33g of leaves and plant matter was discarded after sieving at 10mm. The sample was received unpreserved.

All parameters are determined on the air-dried (<30degC) portion except those requiring a wet sample fraction where as received (wet) sample was used.

Dry Weight (DW) results are reported as determined at <30degC.

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Page 34 of 43

Client:

Folder No:

Comments:

Analytical Report

Final Report

Reported on:

24-Jun-2008

Report ID - 20008207 - 1

Moore Marine

000666723

BS2

Project: Sediment Analysis Sampled on: 21-May-08 @ 00:00

	Result		MRV	Accred	Lab / Tes	stCode
Carbon : Dry Wt	23200.	mg/kg	1000	None	Le	606
Nitrogen : Dry Wt as N	1560.	mg/kg	200	None	Le	606
Total Organic Carbon (TOC) : Dry Wt as C	2.170	%	0.8	MCertS	Le	535
Arsenic : Dry Wt	11.80	mg/kg	1	UKAS	Le	914
Cadmium : Dry Wt	1.530	mg/kg	0.1	MCertS	Le	914
Chromium : Dry Wt	23.900	mg/kg	0.1	MCertS	Le	914
Cobalt : Dry Wt	17.200	mg/kg	0.3	MCertS	Le	914
Copper : Dry Wt	169.000	mg/kg	0.1	MCertS	Le	914
Lead : Dry Wt	173.00	mg/kg	1	MCertS	Le	914
Manganese : Dry Wt	1130.0000	mg/kg	0.05	MCertS	Le	914
Nickel : Dry Wt	24.800	mg/kg	0.3	MCertS	Le	914
Phosphorus : Dry Wt	628.0	mg/kg	60	UKAS	Le	914
Zinc : Dry Wt	411.000	mg/kg	0.5	MCertS	Le	914
Sulphur, Free : Dry Wt	58.6	mg/kg	10	MCertS	Le	912
Dibutyl Tin : Dry Wt as cation	< 0.00600	mg/kg	0.003	MCertS	Le	897
Tributyl Tin : Dry Wt as cation	< 0.00600	mg/kg	0.003	MCertS	Le	897
Triphenyl Tin : Dry Wt as cation	< 0.00400	mg/kg	0.002	MCertS	Le	897
Acenaphthene : Dry Wt	3.100	ug/kg	0.1	MCertS	Le	918
Acenaphthylene : Dry Wt	7.20	ug/kg	1	MCertS	Le	918
Anthracene : Dry Wt	< 20.0	ug/kg	20	MCertS	Le	918
Benzo(a)anthracene : Dry Wt	73.0	ug/kg	20	MCertS	Le	918
Benzo(a)pyrene : Dry Wt	67.0	ug/kg	20	MCertS	Le	918
Benzo(ghi)perylene : Dry Wt	43.00	ug/kg	6	MCertS	Le	918
Benzo(k)fluoranthene : Dry Wt	< 100.	ug/kg	100	MCertS	Le	918
Chrysene : Dry Wt	73.0	ug/kg	30	MCertS	Le	918
Dibenzo(ah)anthracene : Dry Wt	7.50	ug/kg	3	MCertS	Le	918
Fluoranthene : Dry Wt	120.0	ug/kg	20	MCertS	Le	918
Fluorene : Dry Wt	< 10.0	ug/kg	10	MCertS	Le	918
HCH -gamma : Dry Wt :- {Lindane}		ug/kg	2	UKAS	Le	918
Hexachlorobenzene : Dry Wt		ug/kg	0.9	UKAS	Le	918
Indeno(1,2,3cd)pyrene : Dry Wt	41.0	ug/kg	30	MCertS	Le	918
Naphthalene : Dry Wt	11.0	ug/kg	10	MCertS	Le	918
PCB - 008 : Dry Wt	< 2.00	ug/kg	2	MCertS	Le	918
PCB - 020 : Dry Wt	< 2.00	ug/kg	2	MCertS	Le	918
PCB 28 : Dry Wt	< 2.00	ug/kg	2	MCertS	Le	918

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

ENVIRONMENT AGENCY

National Laboratory Service

Analytical Report

Final Report

Report ID - 20008207 - 1

Reported on: 24-Jun-2008

PCB - 035 : Dry Wt	< 2.00	ug/kg	2	MCertS	Le	918
PCB 52 : Dry Wt	< 1.00	ug/kg	1	MCertS	Le	918
PCB - 077 : Dry Wt	< 2.00	ug/kg	2	MCertS	Le	918
PCB 101 : Dry Wt	< 2.00	ug/kg	2	MCertS	Le	918
PCB - 105 : Dry Wt	< 1.00	ug/kg	1	MCertS	Le	918
PCB 118 : Dry Wt	< 1.00	ug/kg	1	MCertS	Le	918
PCB - 126 : Dry Wt	< 1.00	ug/kg	1	MCertS	Le	918
PCB - 128 : Dry Wt	< 1.00	ug/kg	1	MCertS	Le	918
PCB 138 : Dry Wt	< 1.00	ug/kg	1	MCertS	Le	918
PCB - 149 : Dry Wt	< 1.00	ug/kg	1	MCertS	Le	918
PCB 153 : Dry Wt	< 1.00	ug/kg	1	MCertS	Le	918
PCB - 156 : Dry Wt	< 0.900	ug/kg	0.9	MCertS	Le	918
PCB - 169 : Dry Wt	< 0.900	ug/kg	0.9	MCertS	Le	918
PCB - 170 : Dry Wt	< 2.00	ug/kg	2	MCertS	Le	918
PCB 180 : Dry Wt	< 1.00	ug/kg	1	MCertS	Le	918
Phenanthrene : Dry Wt	30.0	ug/kg	20	MCertS	Le	918
Pyrene : Dry Wt	110.0	ug/kg	20	MCertS	Le	918
Equiv.Carbon No >10-12 Aliphatic fraction : Dry Wt	479.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >10-12 Aromatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >12-16 Aliphatic fraction : Dry Wt	304.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >12-16 Aromatic fraction : Dry Wt	654.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >16-21 Aliphatic fraction : Dry Wt	5210.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >16-21 Aromatic fraction : Dry Wt	9000.	ug/kg	400	UKAS	Le	920
Equiv.Carbon No >21-35 Aliphatic fraction : Dry Wt	12700.	ug/kg	3000	UKAS	Le	920
Equiv.Carbon No >21-35 Aromatic fraction : Dry Wt	14200.	ug/kg	3000	UKAS	Le	920
Equiv.Carbon No >35-40 Aliphatic fraction : Dry Wt	2240.	ug/kg	900	UKAS	Le	920
Equiv.Carbon No >35-40 Aromatic fraction : Dry Wt	6050.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Aliphatic extractable C10 - C40 : Dry Wt	21000.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Aromatic extractable C10 - C40 : Dry Wt	30100.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Total extractable C10 - C40 : Dry Wt {EPH}	51100.	ug/kg	4000	MCertS	Le	920
Dry Solids @ 30°C	46.500	%	0.5	None	Le	924
Sample Preparation	Report	Text		None	Le	924

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Page 36 of 43

Final Report

Reported on:

24-Jun-2008

Report ID - 20008207 - 1

Folder Number: 666723

National

Service

Science, Service, Solutions

Laboratory

The sample was received in a 1kg plastic pot weighing approx. 1503g in total. The sample appeared to be a medium brown, very wet loamy sand with leaves present.

223.45g of the sample was taken for drying at <30degC which gave 107.07g of dried sample. The sample was sieved to <10mm before being crushed using a pestle and mortar and then sieved to <2mm.

No waste was discarded after sieving at 10mm. The sample was received unpreserved.

All parameters are determined on the air-dried (<30degC) portion except those requiring a wet sample fraction where as received (wet) sample was used.

Dry Weight (DW) results are reported as determined at <30degC.

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Page 37 of 43

Final Report

Reported on: 24-Jun-2008

Report ID - 20008207 - 1

Client: Moore Marine Folder No: BS3 Comments:

000666724

Project: Sediment Analysis Sampled on: 22-May-08 @ 00:00

	Result		MRV	Accred	Lab / Tes	tCode
Carbon : Dry Wt	82700.	mg/kg	1000	None	Le	606
Nitrogen : Dry Wt as N	4490.	mg/kg	200	None	Le	606
Total Organic Carbon (TOC) : Dry Wt as C	4.750	%	0.8	MCertS	Le	535
Arsenic : Dry Wt	16.40	mg/kg	1	UKAS	Le	914
Cadmium : Dry Wt	3.100	mg/kg	0.1	MCertS	Le	914
Chromium : Dry Wt	24.500	mg/kg	0.1	MCertS	Le	914
Cobalt : Dry Wt	20.300	mg/kg	0.3	MCertS	Le	914
Copper : Dry Wt	158.000	mg/kg	0.1	MCertS	Le	914
Lead : Dry Wt	235.00	mg/kg	1	MCertS	Le	914
Manganese : Dry Wt	1010.0000	mg/kg	0.05	MCertS	Le	914
Mercury : Dry Wt	< 2.00	mg/kg	2	MCertS	Le	914
Nickel : Dry Wt	26.400	mg/kg	0.3	MCertS	Le	914
Phosphorus : Dry Wt	890.0	mg/kg	60	UKAS	Le	914
Zinc : Dry Wt	567.000	mg/kg	0.5	MCertS	Le	914
Sulphur, Free : Dry Wt	1080.0	mg/kg	10	MCertS	Le	912
Dibutyl Tin : Dry Wt as cation	< 0.01000	mg/kg	0.003	MCertS	Le	897
Tributyl Tin : Dry Wt as cation	< 0.01000	mg/kg	0.003	MCertS	Le	897
Triphenyl Tin : Dry Wt as cation	< 0.00700	mg/kg	0.002	MCertS	Le	897
Acenaphthene : Dry Wt	32.000	ug/kg	0.1	MCertS	Le	918
Acenaphthylene : Dry Wt	16.00	ug/kg	1	MCertS	Le	918
Anthracene : Dry Wt	75.0	ug/kg	20	MCertS	Le	918
Benzo(a)anthracene : Dry Wt	240.0	ug/kg	20	MCertS	Le	918
Benzo(a)pyrene : Dry Wt	200.0	ug/kg	20	MCertS	Le	918
Benzo(ghi)perylene : Dry Wt	110.00	ug/kg	6	MCertS	Le	918
Benzo(k)fluoranthene : Dry Wt	160.	ug/kg	100	MCertS	Le	918
Chrysene : Dry Wt	240.0	ug/kg	30	MCertS	Le	918
Dibenzo(ah)anthracene : Dry Wt	22.00	ug/kg	3	MCertS	Le	918
Fluoranthene : Dry Wt	530.0	ug/kg	20	MCertS	Le	918
Fluorene : Dry Wt	18.0	ug/kg	10	MCertS	Le	918
HCH -gamma : Dry Wt :- {Lindane}		ug/kg	2	UKAS	Le	918
Hexachlorobenzene : Dry Wt		ug/kg	0.9	UKAS	Le	918
Indeno(1,2,3cd)pyrene : Dry Wt	94.0	ug/kg	30	MCertS	Le	918
Naphthalene : Dry Wt	39.0	ug/kg	10	MCertS	Le	918
PCB - 008 : Dry Wt	< 2.00	ug/kg	2	MCertS	Le	918
PCB - 020 : Dry Wt	< 2.00	ug/kg	2	MCertS	Le	918

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN

NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

ENVIRONMENT AGENCY

Page 38 of 43

Final Report

Report ID - 20008207 - 1

Reported on: 24-Jun-2008

PCB 28 : Dry Wt	< 2.00	ug/kg	2	MCertS	Le	918
PCB - 035 : Dry Wt	< 2.00	ug/kg	2	MCertS	Le	918
PCB 52 : Dry Wt	< 1.00	ug/kg	1	MCertS	Le	918
PCB - 077 : Dry Wt	< 2.00	ug/kg	2	MCertS	Le	918
PCB 101 : Dry Wt	< 2.00	ug/kg	2	MCertS	Le	918
PCB - 105 : Dry Wt	< 1.00	ug/kg	1	MCertS	Le	918
PCB 118 : Dry Wt	< 1.00	ug/kg	1	MCertS	Le	918
PCB - 126 : Dry Wt	< 1.00	ug/kg	1	MCertS	Le	918
PCB - 128 : Dry Wt	< 1.00	ug/kg	1	MCertS	Le	918
PCB 138 : Dry Wt	< 1.00	ug/kg	1	MCertS	Le	918
PCB - 149 : Dry Wt	< 1.00	ug/kg	1	MCertS	Le	918
PCB 153 : Dry Wt	< 1.00	ug/kg	1	MCertS	Le	918
PCB - 156 : Dry Wt	< 0.900	ug/kg	0.9	MCertS	Le	918
PCB - 169 : Dry Wt	< 0.900	ug/kg	0.9	MCertS	Le	918
PCB - 170 : Dry Wt	< 2.00	ug/kg	2	MCertS	Le	918
PCB 180 : Dry Wt	< 1.00	ug/kg	1	MCertS	Le	918
Phenanthrene : Dry Wt	230.0	ug/kg	20	MCertS	Le	918
Pyrene : Dry Wt	420.0	ug/kg	20	MCertS	Le	918
Equiv.Carbon No >10-12 Aliphatic fraction : Dry Wt	337.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >10-12 Aromatic fraction : Dry Wt	5700.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >12-16 Aliphatic fraction : Dry Wt	566.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >12-16 Aromatic fraction : Dry Wt	6120.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >16-21 Aliphatic fraction : Dry Wt	2930.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >16-21 Aromatic fraction : Dry Wt	177000.	ug/kg	400	UKAS	Le	920
Equiv.Carbon No >21-35 Aliphatic fraction : Dry Wt	15800.	ug/kg	3000	UKAS	Le	920
Equiv.Carbon No >21-35 Aromatic fraction : Dry Wt	202000.	ug/kg	3000	UKAS	Le	920
Equiv.Carbon No >35-40 Aliphatic fraction : Dry Wt	1580.	ug/kg	900	UKAS	Le	920
Equiv.Carbon No >35-40 Aromatic fraction : Dry Wt	54100.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Aliphatic extractable C10 - C40 : Dry Wt	21300.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Aromatic extractable C10 - C40 : Dry Wt	445000.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Total extractable C10 - C40 : Dry Wt {EPH}	466000.	ug/kg	4000	MCertS	Le	920
Dry Solids @ 30°C	30.200	%	0.5	None	Le	924
Sample Preparation	Report	Text		None	Le	924

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Page 39 of 43

Final Report

Reported on:

24-Jun-2008

Report ID - 20008207 - 1

Folder Number: 666724

National

Service

Science, Service, Solutions

Laboratory

The sample was received in a 1kg plastic pot weighing approx. 746g in total. The sample appeared to be a dark brown, very wet loamy sand with leaves present.

124.80g of the sample was taken for drying at <30degC which gave 41.72g of dried sample. The sample was sieved to <10mm before being crushed using a pestle and mortar and then sieved to <2mm.

No waste was discarded after sieving at 10mm. The sample was received unpreserved.

All parameters are determined on the air-dried (<30degC) portion except those requiring a wet sample fraction where as received (wet) sample was used.

Dry Weight (DW) results are reported as determined at <30degC.

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Page 40 of 43

Final Report

Reported on: 24-Jun-2008

Report ID - 20008207 - 1

Client: Moore Marine Folder No: BS4 Comments:

000666725

Project: Sediment Analysis Sampled on: 22-May-08 @ 00:00

	Result		<u>MRV</u>	Accred	Lab / Tes	tCode
Carbon : Dry Wt	15000.	mg/kg	1000	None	Le	606
Nitrogen : Dry Wt as N	970.	mg/kg	200	None	Le	606
Total Organic Carbon (TOC) : Dry Wt as C	1.660	%	0.8	MCertS	Le	535
Arsenic : Dry Wt	8.46	mg/kg	1	UKAS	Le	914
Cadmium : Dry Wt	0.528	mg/kg	0.1	MCertS	Le	914
Chromium : Dry Wt	20.800	mg/kg	0.1	MCertS	Le	914
Cobalt : Dry Wt	6.330	mg/kg	0.3	MCertS	Le	914
Copper : Dry Wt	98.600	mg/kg	0.1	MCertS	Le	914
Lead : Dry Wt	126.00	mg/kg	1	MCertS	Le	914
Manganese : Dry Wt	777.0000	mg/kg	0.05	MCertS	Le	914
Mercury : Dry Wt	< 2.00	mg/kg	2	MCertS	Le	914
Nickel : Dry Wt	16.800	mg/kg	0.3	MCertS	Le	914
Phosphorus : Dry Wt	421.0	mg/kg	60	UKAS	Le	914
Zinc : Dry Wt	215.000	mg/kg	0.5	MCertS	Le	914
Sulphur, Free : Dry Wt	69.4	mg/kg	10	MCertS	Le	912
Dibutyl Tin : Dry Wt as cation	< 0.00500	mg/kg	0.003	MCertS	Le	897
Tributyl Tin : Dry Wt as cation	< 0.00500	mg/kg	0.003	MCertS	Le	897
Triphenyl Tin : Dry Wt as cation	< 0.00400	mg/kg	0.002	MCertS	Le	897
Acenaphthene : Dry Wt	2.700	ug/kg	0.1	MCertS	Le	918
Acenaphthylene : Dry Wt	9.20	ug/kg	1	MCertS	Le	918
Anthracene : Dry Wt	< 20.0	ug/kg	20	MCertS	Le	918
Benzo(a)anthracene : Dry Wt	83.0	ug/kg	20	MCertS	Le	918
Benzo(a)pyrene : Dry Wt	68.0	ug/kg	20	MCertS	Le	918
Benzo(ghi)perylene : Dry Wt	39.00	ug/kg	6	MCertS	Le	918
Benzo(k)fluoranthene : Dry Wt	< 100.	ug/kg	100	MCertS	Le	918
Chrysene : Dry Wt	85.0	ug/kg	30	MCertS	Le	918
Dibenzo(ah)anthracene : Dry Wt	8.40	ug/kg	3	MCertS	Le	918
Fluoranthene : Dry Wt	140.0	ug/kg	20	MCertS	Le	918
Fluorene : Dry Wt	< 10.0	ug/kg	10	MCertS	Le	918
HCH -epsilon : Dry Wt		ug/kg	2	UKAS	Le	918
Hexachlorobenzene : Dry Wt		ug/kg	0.9	UKAS	Le	918
Indeno(1,2,3cd)pyrene : Dry Wt	37.0	ug/kg	30	MCertS	Le	918
Naphthalene : Dry Wt	< 10.0	ug/kg	10	MCertS	Le	918
PCB - 008 : Dry Wt	< 2.00	ug/kg	2	MCertS	Le	918
PCB - 020 : Dry Wt	< 2.00	ug/kg	2	MCertS	Le	918

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN

NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

ENVIRONMENT AGENCY

Final Report

Report ID - 20008207 - 1

Reported on: 24-Jun-2008

PCB 28 : Dry Wt	< 2.00	ug/kg	2	MCertS	Le	918
PCB - 035 : Dry Wt	< 2.00	ug/kg	2	MCertS	Le	918
PCB 52 : Dry Wt	< 1.00	ug/kg	1	MCertS	Le	918
PCB - 077 : Dry Wt	< 2.00	ug/kg	2	MCertS	Le	918
PCB 101 : Dry Wt	< 2.00	ug/kg	2	MCertS	Le	918
PCB - 105 : Dry Wt	< 1.00	ug/kg	1	MCertS	Le	918
PCB 118 : Dry Wt	< 1.00	ug/kg	1	MCertS	Le	918
PCB - 126 : Dry Wt	< 1.00	ug/kg	1	MCertS	Le	918
PCB - 128 : Dry Wt	< 1.00	ug/kg	1	MCertS	Le	918
PCB 138 : Dry Wt	< 1.00	ug/kg	1	MCertS	Le	918
PCB - 149 : Dry Wt	< 1.00	ug/kg	1	MCertS	Le	918
PCB 153 : Dry Wt	< 1.00	ug/kg	1	MCertS	Le	918
PCB - 156 : Dry Wt	< 0.900	ug/kg	0.9	MCertS	Le	918
PCB - 169 : Dry Wt	< 0.900	ug/kg	0.9	MCertS	Le	918
PCB - 170 : Dry Wt	< 2.00	ug/kg	2	MCertS	Le	918
PCB 180 : Dry Wt	< 1.00	ug/kg	1	MCertS	Le	918
Phenanthrene : Dry Wt	57.0	ug/kg	20	MCertS	Le	918
Pyrene : Dry Wt	110.0	ug/kg	20	MCertS	Le	918
Equiv.Carbon No >10-12 Aliphatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >10-12 Aromatic fraction : Dry Wt	354.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >12-16 Aliphatic fraction : Dry Wt	503.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >12-16 Aromatic fraction : Dry Wt	757.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >16-21 Aliphatic fraction : Dry Wt	2210.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >16-21 Aromatic fraction : Dry Wt	11400.	ug/kg	400	UKAS	Le	920
Equiv.Carbon No >21-35 Aliphatic fraction : Dry Wt	8090.	ug/kg	3000	UKAS	Le	920
Equiv.Carbon No >21-35 Aromatic fraction : Dry Wt	18700.	ug/kg	3000	UKAS	Le	920
Equiv.Carbon No >35-40 Aliphatic fraction : Dry Wt	1240.	ug/kg	900	UKAS	Le	920
Equiv.Carbon No >35-40 Aromatic fraction : Dry Wt	5440.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Aliphatic extractable C10 - C40 : Dry Wt	12200.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Aromatic extractable C10 - C40 : Dry Wt	36600.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Total extractable C10 - C40 : Dry Wt {EPH}	48800.	ug/kg	4000	MCertS	Le	920
Dry Solids @ 30°C	56.900	%	0.5	None	Le	924
Sample Preparation	Report	Text		None	Le	924

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Page 42 of 43

Final Report

Reported on: 24-Jun-2008

Report ID - 20008207 - 1

Folder Number: 666725

National

Service

Science, Service, Solution:

Laboratory

The sample was received in a 1kg plastic pot weighing approx. 1933g in total. The sample appeared to be a medium brown, very wet sediment with small stones present.

279.61g of the sample was taken for drying at <30degC which gave 161.69g of dried sample. The sample was sieved to <10mm before being crushed using a pestle and mortar and then sieved to <2mm.

No waste was discarded after sieving at 10mm. The sample was received unpreserved.

All parameters are determined on the air-dried (<30degC) portion except those requiring a wet sample fraction where as received (wet) sample was used.

Dry Weight (DW) results are reported as determined at <30degC.

Key to Accreditation: UKAS = Methodology accredited to ISO/IEC 17025:2005, MCertS = Methodology accredited to MCertS Performance Standard for testing of soils, none = Methodology not accredited

Key to Lab Code: Le = Leeds, LI = Llanelli, No = Nottingham, Sx = Starcross, SC = Sub-Contracted outside NLS

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Page 43 of 43

Final Report

Reported on:

27-Jun-2008

Report ID - 20008325 - 1

Eoghan Kieran Moore Marine Corporate House Ballybrit Business Park Galway Ireland

Dear Eoghan

Please find attached the results for the batch of samples described below.

Samples taken on:	21-May-2008
Samples Registered on:	03-Jun-2008
Results for Batch Number	20008325

You will be invoiced shortly by our accounts department.

If we can be of further assistance then please do not hesitate to contact us.

Yours sincerely

William Fardon Customer Services Team Leader Tel: (0113) 231 2177 nls@environment-agency.gov.uk

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of analytical procedures and performance data are available on request. The date of sample analysis is available on request.

The Environment Agency carries out analytical work to high standards and within the scope of its UKAS accreditation, but has no knowledge of whether the circumstances or the validity of the procedures used to obtain the samples provided to the laboratory were representative of the need for which the information was required. The Environment Agency and/or its staff does not therefore accept any liability for the consequences of any acts or omissions made on the basis of the analysis or advice or interpretation provided.

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Page 1 of 22

Final Report

Report ID - 20008325 - 1

Reported on: 27-Jun-2008

Client: Moore Marine Folder No: 000688321 Comments:

BCA1 and BCA2

Project: Sediment Analysis Sampled on: 21-May-08 @ 00:00

	<u>Result</u>		MRV	Accred	_ab / Tes	tCode
Carbon : Dry Wt	4400.	mg/kg	1000	None	Le	606
Nitrogen : Dry Wt as N	290.	mg/kg	200	None	Le	606
Total Organic Carbon (TOC) : Dry Wt as C	< 0.800	%	0.8	UKAS	Le	535
Arsenic : Dry Wt	40.10	mg/kg	1	UKAS	Le	914
Cadmium : Dry Wt	0.762	mg/kg	0.1	UKAS	Le	914
Chromium : Dry Wt	25.700	mg/kg	0.1	UKAS	Le	914
Cobalt : Dry Wt	11.100	mg/kg	0.3	UKAS	Le	914
Copper : Dry Wt	71.500	mg/kg	0.1	UKAS	Le	914
Lead : Dry Wt	105.00	mg/kg	1	UKAS	Le	914
Manganese : Dry Wt	1950.0000	mg/kg	0.05	UKAS	Le	914
Mercury : Dry Wt	< 2.00	mg/kg	2	UKAS	Le	914
Nickel : Dry Wt	18.600	mg/kg	0.3	UKAS	Le	914
Phosphorus : Dry Wt	427.0	mg/kg	60	UKAS	Le	914
Zinc : Dry Wt	168.000	mg/kg	0.5	UKAS	Le	914
Sulphur, Free : Dry Wt	15.1	mg/kg	10	UKAS	Le	912
Dibutyl Tin : Dry Wt as cation	< 0.00300	mg/kg	0.003	UKAS	Le	897
Tributyl Tin : Dry Wt as cation	< 0.00300	mg/kg	0.003	UKAS	Le	897
Triphenyl Tin : Dry Wt as cation	< 0.00200	mg/kg	0.002	UKAS	Le	897
Acenaphthene : Dry Wt	1.800	ug/kg	0.1	UKAS	Le	918
Acenaphthylene : Dry Wt	3.70	ug/kg	1	UKAS	Le	918
Anthracene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Benzo(a)anthracene : Dry Wt	46.0	ug/kg	20	UKAS	Le	918
Benzo(a)pyrene : Dry Wt	31.0	ug/kg	20	UKAS	Le	918
Benzo(ghi)perylene : Dry Wt	23.00	ug/kg	6	UKAS	Le	918
Benzo(k)fluoranthene : Dry Wt	< 100.	ug/kg	100	UKAS	Le	918
Chrysene : Dry Wt	40.0	ug/kg	30	UKAS	Le	918
Dibenzo(ah)anthracene : Dry Wt	8.40	ug/kg	3	UKAS	Le	918
Fluoranthene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Fluorene : Dry Wt	< 10.0	ug/kg	10	UKAS	Le	918
HCH -gamma : Dry Wt :- {Lindane}	< 2.00	ug/kg	2	UKAS	Le	918
Hexachlorobenzene : Dry Wt	< 0.900	ug/kg	0.9	UKAS	Le	918
Indeno(1,2,3cd)pyrene : Dry Wt	< 30.0	ug/kg	30	UKAS	Le	918
Naphthalene : Dry Wt	< 10.0	ug/kg	10	UKAS	Le	918
PCB - 008 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB - 020 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD

NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN

NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

ENVIRONMENT AGENCY

National Laboratory Service

Analytical Report

Final Report

Report ID - 20008325 - 1

Reported on: 27-Jun-2008

PCB 28 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB - 035 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 52 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 077 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 101 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB - 105 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 118 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 126 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 128 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 138 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 149 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 153 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 156 : Dry Wt	< 0.900	ug/kg	0.9	UKAS	Le	918
PCB - 169 : Dry Wt	< 0.900	ug/kg	0.9	UKAS	Le	918
PCB - 170 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 180 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
Phenanthrene : Dry Wt	23.0	ug/kg	20	UKAS	Le	918
Pyrene : Dry Wt	70.0	ug/kg	20	UKAS	Le	918
Equiv.Carbon No >10-12 Aliphatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >10-12 Aromatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >12-16 Aliphatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >12-16 Aromatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >16-21 Aliphatic fraction : Dry Wt	332.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >16-21 Aromatic fraction : Dry Wt	618.	ug/kg	400	UKAS	Le	920
Equiv.Carbon No >21-35 Aliphatic fraction : Dry Wt	< 3000.	ug/kg	3000	UKAS	Le	920
Equiv.Carbon No >21-35 Aromatic fraction : Dry Wt	4740.	ug/kg	3000	UKAS	Le	920
Equiv.Carbon No >35-40 Aliphatic fraction : Dry Wt	< 900.	ug/kg	900	UKAS	Le	920
Equiv.Carbon No >35-40 Aromatic fraction : Dry Wt	< 3000.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Aliphatic extractable C10 - C40 : Dry Wt	< 3000.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Aromatic extractable C10 - C40 : Dry Wt	6890.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Total extractable C10 - C40 : Dry Wt {EPH}	8390.	ug/kg	4000	UKAS	Le	920
Dry Solids @ 30°C	93.900	%	0.5	None	Le	924
Sample Preparation	Report	Text		None	Le	924

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Page 3 of 22

Final Report

Report ID - 20008325 - 1

Reported on: 27-Jun-2008

Folder Number: 688321

National

Service

Science, Service, So

Laboratory

The sample was received in a 1l plastic pot weighing approx. 764g in total. The sample appeared to be a multicoloured gravel of pebbles and stones.

162.59g of the sample was taken for drying at <30degC which gave 153.08g of dried sample. The sample was sieved to <10mm before being crushed using a pestle and mortar and then sieved to <2mm.

27.04g of pebbles and stones was discarded after sieving at 10mm. The sample was received unpreserved.

All parameters are determined on the air-dried (<30degC) portion except those requiring a wet sample fraction where as received (wet) sample was used.

Dry Weight (DW) results are reported as determined at <30degC.

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Page 4 of 22

Final Report

Report ID - 20008325 - 1

Reported on: 27-Jun-2008

Client: Moore Marine Folder No: 000688322 Comments:

BC1A and BC1B

Project: Sediment Analysis Sampled on: 21-May-08 @ 00:00

	Result		MRV	Accred L	ab / Tes	tCode
Carbon : Dry Wt	79000.	mg/kg	1000	None	Le	606
Nitrogen : Dry Wt as N	559.	mg/kg	200	None	Le	606
Total Organic Carbon (TOC) : Dry Wt as C	7.580	%	0.8	UKAS	Le	535
Arsenic : Dry Wt	22.50	mg/kg	1	UKAS	Le	914
Cadmium : Dry Wt	0.351	mg/kg	0.1	UKAS	Le	914
Chromium : Dry Wt	36.000	mg/kg	0.1	UKAS	Le	914
Cobalt : Dry Wt	12.800	mg/kg	0.3	UKAS	Le	914
Copper : Dry Wt	33.100	mg/kg	0.1	UKAS	Le	914
Lead : Dry Wt	38.10	mg/kg	1	UKAS	Le	914
Manganese : Dry Wt	1210.0000	mg/kg	0.05	UKAS	Le	914
Mercury : Dry Wt	< 2.00	mg/kg	2	UKAS	Le	914
Nickel : Dry Wt	25.000	mg/kg	0.3	UKAS	Le	914
Phosphorus : Dry Wt	941.0	mg/kg	60	UKAS	Le	914
Zinc : Dry Wt	101.000	mg/kg	0.5	UKAS	Le	914
Sulphur, Free : Dry Wt	30.0	mg/kg	10	UKAS	Le	912
Dibutyl Tin : Dry Wt as cation	< 0.00600	mg/kg	0.003	UKAS	Le	897
Tributyl Tin : Dry Wt as cation	< 0.00600	mg/kg	0.003	UKAS	Le	897
Triphenyl Tin : Dry Wt as cation	< 0.00400	mg/kg	0.002	UKAS	Le	897
Acenaphthene : Dry Wt	15.000	ug/kg	0.1	UKAS	Le	918
Acenaphthylene : Dry Wt	8.40	ug/kg	1	UKAS	Le	918
Anthracene : Dry Wt	28.0	ug/kg	20	UKAS	Le	918
Benzo(a)anthracene : Dry Wt	49.0	ug/kg	20	UKAS	Le	918
Benzo(a)pyrene : Dry Wt	52.0	ug/kg	20	UKAS	Le	918
Benzo(ghi)perylene : Dry Wt	15.00	ug/kg	6	UKAS	Le	918
Benzo(k)fluoranthene : Dry Wt	< 100.	ug/kg	100	UKAS	Le	918
Chrysene : Dry Wt	68.0	ug/kg	30	UKAS	Le	918
Dibenzo(ah)anthracene : Dry Wt	7.80	ug/kg	3	UKAS	Le	918
Fluoranthene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Fluorene : Dry Wt	< 10.0	ug/kg	10	UKAS	Le	918
HCH -gamma : Dry Wt :- {Lindane}	< 2.00	ug/kg	2	UKAS	Le	918
Hexachlorobenzene : Dry Wt	< 0.900	ug/kg	0.9	UKAS	Le	918
Indeno(1,2,3cd)pyrene : Dry Wt	< 30.0	ug/kg	30	UKAS	Le	918
Naphthalene : Dry Wt	10.0	ug/kg	10	UKAS	Le	918
PCB - 008 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB - 020 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD

NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN

NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Environment Agency

National Laboratory Service

Analytical Report

Final Report

Report ID - 20008325 - 1

Reported on: 27-Jun-2008

PCB 28 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB - 035 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 52 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 077 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 101 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB - 105 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 118 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 126 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 128 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 138 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 149 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 153 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 156 : Dry Wt	< 0.900	ug/kg	0.9	UKAS	Le	918
PCB - 169 : Dry Wt	< 0.900	ug/kg	0.9	UKAS	Le	918
PCB - 170 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 180 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
Phenanthrene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Pyrene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Equiv.Carbon No >10-12 Aliphatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >10-12 Aromatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >12-16 Aliphatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >12-16 Aromatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >16-21 Aliphatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >16-21 Aromatic fraction : Dry Wt	933.	ug/kg	400	UKAS	Le	920
Equiv.Carbon No >21-35 Aliphatic fraction : Dry Wt	< 3000.	ug/kg	3000	UKAS	Le	920
Equiv.Carbon No >21-35 Aromatic fraction : Dry Wt	17600.	ug/kg	3000	UKAS	Le	920
Equiv.Carbon No >35-40 Aliphatic fraction : Dry Wt	< 900.	ug/kg	900	UKAS	Le	920
Equiv.Carbon No >35-40 Aromatic fraction : Dry Wt	21300.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Aliphatic extractable C10 - C40 : Dry Wt	< 3000.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Aromatic extractable C10 - C40 : Dry Wt	40100.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Total extractable C10 - C40 : Dry Wt {EPH}	41600.	ug/kg	4000	UKAS	Le	920
Dry Solids @ 30°C	52.600	%	0.5	None	Le	924
Sample Preparation	Report	Text		None	Le	924

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Page 6 of 22

Final Report

Report ID - 20008325 - 1

Reported on: 27-Jun-2008

Folder Number: 688322

National

Service

Science, Service, So

Laboratory

The sample was received in a 1l plastic pot weighing approx. 353g in total. The sample appeared to be a dark brown loamy clay with stones and roots present.

79.29g of the sample was taken for drying at <30degC which gave 44.41g of dried sample. The sample was sieved to <10mm before being crushed using a pestle and mortar and then sieved to <2mm.

No waste was discarded after sieving at 10mm. The sample was received unpreserved.

All parameters are determined on the air-dried (<30degC) portion except those requiring a wet sample fraction where as received (wet) sample was used.

Dry Weight (DW) results are reported as determined at <30degC.

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Page 7 of 22

Final Report

Report ID - 20008325 - 1

Reported on: 27-Jun-2008

Client: Moore Marine Folder No: BC2A Comments:

000688323

Project: Sediment Analysis Sampled on: 21-May-08 @ 00:00

	<u>Result</u>		<u>MRV</u>	Accred	Lab / Tes	tCode
Carbon : Dry Wt	4290.	mg/kg	1000	None	Le	606
Nitrogen : Dry Wt as N	350.	mg/kg	200	None	Le	606
Total Organic Carbon (TOC) : Dry Wt as C	< 0.800	%	0.8	UKAS	Le	535
Arsenic : Dry Wt	24.70	mg/kg	1	UKAS	Le	914
Cadmium : Dry Wt	0.544	mg/kg	0.1	UKAS	Le	914
Chromium : Dry Wt	20.400	mg/kg	0.1	UKAS	Le	914
Cobalt : Dry Wt	8.740	mg/kg	0.3	UKAS	Le	914
Copper : Dry Wt	89.000	mg/kg	0.1	UKAS	Le	914
Lead : Dry Wt	164.00	mg/kg	1	UKAS	Le	914
Manganese : Dry Wt	965.0000	mg/kg	0.05	UKAS	Le	914
Nickel : Dry Wt	19.600	mg/kg	0.3	UKAS	Le	914
Phosphorus : Dry Wt	341.0	mg/kg	60	UKAS	Le	914
Zinc : Dry Wt	173.000	mg/kg	0.5	UKAS	Le	914
Sulphur, Free : Dry Wt	22.3	mg/kg	10	UKAS	Le	912
Dibutyl Tin : Dry Wt as cation	< 0.00300	mg/kg	0.003	UKAS	Le	897
Tributyl Tin : Dry Wt as cation	< 0.00300	mg/kg	0.003	UKAS	Le	897
Triphenyl Tin : Dry Wt as cation	< 0.00200	mg/kg	0.002	UKAS	Le	897
Acenaphthene : Dry Wt	5.400	ug/kg	0.1	UKAS	Le	918
Acenaphthylene : Dry Wt	4.10	ug/kg	1	UKAS	Le	918
Anthracene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Benzo(a)anthracene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Benzo(a)pyrene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Benzo(ghi)perylene : Dry Wt	15.00	ug/kg	6	UKAS	Le	918
Benzo(k)fluoranthene : Dry Wt	< 100.	ug/kg	100	UKAS	Le	918
Chrysene : Dry Wt	< 30.0	ug/kg	30	UKAS	Le	918
Dibenzo(ah)anthracene : Dry Wt	5.10	ug/kg	3	UKAS	Le	918
Fluoranthene : Dry Wt	33.0	ug/kg	20	UKAS	Le	918
Fluorene : Dry Wt	< 10.0	ug/kg	10	UKAS	Le	918
HCH -gamma : Dry Wt :- {Lindane}	2.80	ug/kg	2	UKAS	Le	918
Hexachlorobenzene : Dry Wt	< 0.900	ug/kg	0.9	UKAS	Le	918
Indeno(1,2,3cd)pyrene : Dry Wt	< 30.0	ug/kg	30	UKAS	Le	918
Naphthalene : Dry Wt	< 10.0	ug/kg	10	UKAS	Le	918
PCB - 008 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB - 020 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 28 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD

NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN

NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Page 8 of 22

National Laboratory Service

Analytical Report

Final Report

Report ID - 20008325 - 1

Reported on: 27-Jun-2008

PCB - 035 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 52 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 077 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 101 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB - 105 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 118 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 126 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 128 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 138 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 149 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 153 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 156 : Dry Wt	< 0.900	ug/kg	0.9	UKAS	Le	918
PCB - 169 : Dry Wt	< 0.900	ug/kg	0.9	UKAS	Le	918
PCB - 170 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 180 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
Phenanthrene : Dry Wt	21.0	ug/kg	20	UKAS	Le	918
Pyrene : Dry Wt	34.0	ug/kg	20	UKAS	Le	918
Equiv.Carbon No >10-12 Aliphatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >10-12 Aromatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >12-16 Aliphatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >12-16 Aromatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >16-21 Aliphatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >16-21 Aromatic fraction : Dry Wt	< 400.	ug/kg	400	UKAS	Le	920
Equiv.Carbon No >21-35 Aliphatic fraction : Dry Wt	< 3000.	ug/kg	3000	UKAS	Le	920
Equiv.Carbon No >21-35 Aromatic fraction : Dry Wt	< 3000.	ug/kg	3000	UKAS	Le	920
Equiv.Carbon No >35-40 Aliphatic fraction : Dry Wt	< 900.	ug/kg	900	UKAS	Le	920
Equiv.Carbon No >35-40 Aromatic fraction : Dry Wt	< 3000.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Aliphatic extractable C10 - C40 : Dry Wt	< 3000.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Aromatic extractable C10 - C40 : Dry Wt	< 3000.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Total extractable C10 - C40 : Dry Wt {EPH}	< 4000.	ug/kg	4000	UKAS	Le	920
Dry Solids @ 30°C	88.200	%	0.5	None	Le	924
Sample Preparation	Report	Text		None	Le	924

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Page 9 of 22

Final Report

Report ID - 20008325 - 1

Reported on: 27-Jun-2008

Folder Number: 688323

National

Service

Science, Service, So

Laboratory

The sample was received in a 1l plastic pot weighing approx. 764g in total. The sample appeared to be a multi-coloured gravel consisting of stones and pebbles.

115.26g of the sample was taken for drying at <30degC which gave 102.33g of dried sample. The sample was sieved to <10mm before being crushed using a pestle and mortar and then sieved to <2mm.

No waste was discarded after sieving at 10mm. The sample was received unpreserved.

All parameters are determined on the air-dried (<30degC) portion except those requiring a wet sample fraction where as received (wet) sample was used.

Dry Weight (DW) results are reported as determined at <30degC.

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Page 10 of 22

National Laboratory Service Science, Service, Solutions

Analytical Report

Final Report

Report ID - 20008325 - 1

Reported on: 27-Jun-2008

Client: Moore Marine Folder No: 000688324 BC3A and BC3B Comments:

Carbon : Dry Wt Nitrogen : Dry Wt as N Total Organic Carbon (TOC) : Dry Wt as Arsenic : Dry Wt Cadmium : Dry Wt Chromium : Dry Wt Cobalt : Dry Wt Copper : Dry Wt Lead : Dry Wt Manganese : Dry Wt Mercury : Dry Wt Nickel : Dry Wt Phosphorus : Dry Wt Zinc : Dry Wt Sulphur, Free : Dry Wt Dibutyl Tin : Dry Wt as cation Tributyl Tin : Dry Wt as cation Triphenyl Tin : Dry Wt as cation Acenaphthene : Dry Wt Acenaphthylene : Dry Wt Anthracene : Dry Wt Benzo(a)anthracene : Dry Wt Benzo(a)pyrene : Dry Wt Benzo(ghi)perylene : Dry Wt Benzo(k)fluoranthene : Dry Wt Chrysene : Dry Wt Dibenzo(ah)anthracene : Dry Wt Fluoranthene : Dry Wt Fluorene : Dry Wt HCH -gamma : Dry Wt :- {Lindane} Hexachlorobenzene : Dry Wt Indeno(1,2,3cd)pyrene : Dry Wt Naphthalene : Dry Wt PCB - 008 : Dry Wt PCB - 020 : Dry Wt

Project: Sediment Analysis Sampled on: 22-May-08 @ 00:00

	<u>Result</u>		<u>MRV</u>	Accred	Lab / Tes	stCode
	15500.	mg/kg	1000	None	Le	606
	1120.	mg/kg	200	None	Le	606
С	1.800	%	0.8	UKAS	Le	535
	48.70	mg/kg	1	UKAS	Le	914
	1.540	mg/kg	0.1	UKAS	Le	914
	24.200	mg/kg	0.1	UKAS	Le	914
	14.100	mg/kg	0.3	UKAS	Le	914
	375.000	mg/kg	0.1	UKAS	Le	914
	163.00	mg/kg	1	UKAS	Le	914
	906.0000	mg/kg	0.05	UKAS	Le	914
	< 2.00	mg/kg	2	UKAS	Le	914
	20.200	mg/kg	0.3	UKAS	Le	914
	491.0	mg/kg	60	UKAS	Le	914
	513.000	mg/kg	0.5	UKAS	Le	914
	249.0	mg/kg	10	UKAS	Le	912
	< 0.00400	mg/kg	0.003	UKAS	Le	897
	< 0.00400	mg/kg	0.003	UKAS	Le	897
	< 0.00300	mg/kg	0.002	UKAS	Le	897
	5.300	ug/kg	0.1	UKAS	Le	918
	7.90	ug/kg	1	UKAS	Le	918
	< 20.0	ug/kg	20	UKAS	Le	918
	59.0	ug/kg	20	UKAS	Le	918
	76.0	ug/kg	20	UKAS	Le	918
	53.00	ug/kg	6	UKAS	Le	918
	< 100.	ug/kg	100	UKAS	Le	918
	51.0	ug/kg	30	UKAS	Le	918
	15.00	ug/kg	3	UKAS	Le	918
	110.0	ug/kg	20	UKAS	Le	918
	12.0	ug/kg	10	UKAS	Le	918
	< 2.00	ug/kg	2	UKAS	Le	918
	< 0.900	ug/kg	0.9	UKAS	Le	918
	< 30.0	ug/kg	30	UKAS	Le	918
	53.0	ug/kg	10	UKAS	Le	918
	< 2.00	ug/kg	2	UKAS	Le	918
	< 2.00	ug/kg	2	UKAS	Le	918

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN

NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

ENVIRONMENT AGENCY

National Laboratory Service

Analytical Report

Final Report

Report ID - 20008325 - 1

Reported on: 27-Jun-2008

PCB 28 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB - 035 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 52 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 077 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 101 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB - 105 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 118 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 126 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 128 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 138 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 149 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 153 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 156 : Dry Wt	< 0.900	ug/kg	0.9	UKAS	Le	918
PCB - 169 : Dry Wt	< 0.900	ug/kg	0.9	UKAS	Le	918
PCB - 170 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 180 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
Phenanthrene : Dry Wt	52.0	ug/kg	20	UKAS	Le	918
Pyrene : Dry Wt	100.0	ug/kg	20	UKAS	Le	918
Equiv.Carbon No >10-12 Aliphatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >10-12 Aromatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >12-16 Aliphatic fraction : Dry Wt	878.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >12-16 Aromatic fraction : Dry Wt	828.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >16-21 Aliphatic fraction : Dry Wt	6940.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >16-21 Aromatic fraction : Dry Wt	37900.	ug/kg	400	UKAS	Le	920
Equiv.Carbon No >21-35 Aliphatic fraction : Dry Wt	40900.	ug/kg	3000	UKAS	Le	920
Equiv.Carbon No >21-35 Aromatic fraction : Dry Wt	141000.	ug/kg	3000	UKAS	Le	920
Equiv.Carbon No >35-40 Aliphatic fraction : Dry Wt	6290.	ug/kg	900	UKAS	Le	920
Equiv.Carbon No >35-40 Aromatic fraction : Dry Wt	35100.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Aliphatic extractable C10 - C40 : Dry Wt	55200.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Aromatic extractable C10 - C40 : Dry Wt	215000.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Total extractable C10 - C40 : Dry Wt {EPH}	270000.	ug/kg	4000	UKAS	Le	920
Dry Solids @ 30°C	67.200	%	0.5	None	Le	924
Sample Preparation	Report	Text		None	Le	924

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Page 12 of 22

Final Report

Report ID - 20008325 - 1

Reported on: 27-Jun-2008

Folder Number: 688324

National

Service

Science, Service, So

Laboratory

The sample was received in a 1l plastic pot weighing approx. 335g in total. The sample appeared to be a dark brown clay sand with stones and roots present.

56.41g of the sample was taken for drying at <30degC which gave 39.81g of dried sample. The sample was sieved to <10mm before being crushed using a pestle and mortar and then sieved to <2mm.

No waste was discarded after sieving at 10mm. The sample was received unpreserved.

All parameters are determined on the air-dried (<30degC) portion except those requiring a wet sample fraction where as received (wet) sample was used.

Dry Weight (DW) results are reported as determined at <30degC.

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Page 13 of 22

Final Report

Report ID - 20008325 - 1

Reported on: 27-Jun-2008

Client: Moore Marine Folder No: 000688325 Comments:

BC4A and BC4B

Project: Sediment Analysis Sampled on: 22-May-08 @ 00:00

	Result		<u>MRV</u>	Accred	Lab / Tes	tCode
Carbon : Dry Wt	3290.	mg/kg	1000	None	Le	606
Nitrogen : Dry Wt as N	440.	mg/kg	200	None	Le	606
Total Organic Carbon (TOC) : Dry Wt as C	< 0.800	%	0.8	UKAS	Le	535
Arsenic : Dry Wt	47.20	mg/kg	1	UKAS	Le	914
Cadmium : Dry Wt	0.803	mg/kg	0.1	UKAS	Le	914
Chromium : Dry Wt	23.000	mg/kg	0.1	UKAS	Le	914
Cobalt : Dry Wt	9.060	mg/kg	0.3	UKAS	Le	914
Copper : Dry Wt	745.000	mg/kg	0.1	UKAS	Le	914
Lead : Dry Wt	142.00	mg/kg	1	UKAS	Le	914
Manganese : Dry Wt	941.0000	mg/kg	0.05	UKAS	Le	914
Mercury : Dry Wt	< 2.00	mg/kg	2	UKAS	Le	914
Nickel : Dry Wt	14.600	mg/kg	0.3	UKAS	Le	914
Phosphorus : Dry Wt	334.0	mg/kg	60	UKAS	Le	914
Zinc : Dry Wt	367.000	mg/kg	0.5	UKAS	Le	914
Sulphur, Free : Dry Wt	374.0	mg/kg	10	UKAS	Le	912
Dibutyl Tin : Dry Wt as cation	< 0.00400	mg/kg	0.003	UKAS	Le	897
Tributyl Tin : Dry Wt as cation	< 0.00400	mg/kg	0.003	UKAS	Le	897
Triphenyl Tin : Dry Wt as cation	< 0.00300	mg/kg	0.002	UKAS	Le	897
Acenaphthene : Dry Wt	2.800	ug/kg	0.1	UKAS	Le	918
Acenaphthylene : Dry Wt	3.70	ug/kg	1	UKAS	Le	918
Anthracene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Benzo(a)anthracene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Benzo(a)pyrene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Benzo(ghi)perylene : Dry Wt	7.60	ug/kg	6	UKAS	Le	918
Benzo(k)fluoranthene : Dry Wt	< 100.	ug/kg	100	UKAS	Le	918
Chrysene : Dry Wt	< 30.0	ug/kg	30	UKAS	Le	918
Dibenzo(ah)anthracene : Dry Wt	< 3.00	ug/kg	3	UKAS	Le	918
Fluoranthene : Dry Wt	23.0	ug/kg	20	UKAS	Le	918
Fluorene : Dry Wt	< 10.0	ug/kg	10	UKAS	Le	918
HCH -gamma : Dry Wt :- {Lindane}	< 2.00	ug/kg	2	UKAS	Le	918
Hexachlorobenzene : Dry Wt	< 0.900	ug/kg	0.9	UKAS	Le	918
Indeno(1,2,3cd)pyrene : Dry Wt	< 30.0	ug/kg	30	UKAS	Le	918
Naphthalene : Dry Wt	< 10.0	ug/kg	10	UKAS	Le	918
PCB - 008 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB - 020 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD

NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN

NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Environment Agency

Page 14 of 22

National Laboratory Service

Analytical Report

Final Report

Report ID - 20008325 - 1

Reported on: 27-Jun-2008

PCB 28 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB - 035 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 52 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 077 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 101 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB - 105 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 118 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 126 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 128 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 138 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 149 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 153 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 156 : Dry Wt	< 0.900	ug/kg	0.9	UKAS	Le	918
PCB - 169 : Dry Wt	< 0.900	ug/kg	0.9	UKAS	Le	918
PCB - 170 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 180 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
Phenanthrene : Dry Wt	< 20.0	ug/kg	20	UKAS	Le	918
Pyrene : Dry Wt	27.0	ug/kg	20	UKAS	Le	918
Equiv.Carbon No >10-12 Aliphatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >10-12 Aromatic fraction : Dry Wt	< 300.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >12-16 Aliphatic fraction : Dry Wt	330.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >12-16 Aromatic fraction : Dry Wt	388.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >16-21 Aliphatic fraction : Dry Wt	5070.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >16-21 Aromatic fraction : Dry Wt	32100.	ug/kg	400	UKAS	Le	920
Equiv.Carbon No >21-35 Aliphatic fraction : Dry Wt	5480.	ug/kg	3000	UKAS	Le	920
Equiv.Carbon No >21-35 Aromatic fraction : Dry Wt	11400.	ug/kg	3000	UKAS	Le	920
Equiv.Carbon No >35-40 Aliphatic fraction : Dry Wt	1450.	ug/kg	900	UKAS	Le	920
Equiv.Carbon No >35-40 Aromatic fraction : Dry Wt	3010.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Aliphatic extractable C10 - C40 : Dry Wt	12500.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Aromatic extractable C10 - C40 : Dry Wt	47000.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Total extractable C10 - C40 : Dry Wt {EPH}	59500.	ug/kg	4000	UKAS	Le	920
Dry Solids @ 30°C	75.000	%	0.5	None	Le	924
Sample Preparation	Report	Text		None	Le	924

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Page 15 of 22

Final Report

Reported on:

27-Jun-2008

Report ID - 20008325 - 1

Folder Number: 688325

National

Service

Science, Service, So

Laboratory

The sample was received in a 1l plastic pot weighing approx. 626g in total. The sample appeared to be a dark brown, very wet, sand with grit present.

129.69g of the sample was taken for drying at <30degC which gave 96.37g of dried sample. The sample was sieved to <10mm before being crushed using a pestle and mortar and then sieved to <2mm.

5.58g of stones was discarded after sieving at 10mm. The sample was received unpreserved.

All parameters are determined on the air-dried (<30degC) portion except those requiring a wet sample fraction where as received (wet) sample was used.

Dry Weight (DW) results are reported as determined at <30degC.

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Page 16 of 22

Final Report

Report ID - 20008325 - 1

Reported on: 27-Jun-2008

Client: Moore Marine Folder No: 000688326 Comments:

BC5A and BC5B

Project: Sediment Analysis Sampled on: 22-May-08 @ 00:00

	Result		<u>MRV</u>	Accred	Lab / Tes	stCode
Carbon : Dry Wt	29100.	mg/kg	1000	None	Le	606
Nitrogen : Dry Wt as N	1560.	mg/kg	200	None	Le	606
Total Organic Carbon (TOC) : Dry Wt as C	1.980	%	0.8	UKAS	Le	535
Arsenic : Dry Wt	84.30	mg/kg	1	UKAS	Le	914
Cadmium : Dry Wt	2.800	mg/kg	0.1	UKAS	Le	914
Chromium : Dry Wt	29.100	mg/kg	0.1	UKAS	Le	914
Cobalt : Dry Wt	13.700	mg/kg	0.3	UKAS	Le	914
Copper : Dry Wt	575.000	mg/kg	0.1	UKAS	Le	914
Lead : Dry Wt	309.00	mg/kg	1	UKAS	Le	914
Manganese : Dry Wt	923.0000	mg/kg	0.05	UKAS	Le	914
Mercury : Dry Wt	< 2.00	mg/kg	2	UKAS	Le	914
Nickel : Dry Wt	17.500	mg/kg	0.3	UKAS	Le	914
Phosphorus : Dry Wt	2260.0	mg/kg	60	UKAS	Le	914
Zinc : Dry Wt	807.000	mg/kg	0.5	UKAS	Le	914
Sulphur, Free : Dry Wt	1250.0	mg/kg	10	UKAS	Le	912
Dibutyl Tin : Dry Wt as cation	< 0.00500	mg/kg	0.003	UKAS	Le	897
Tributyl Tin : Dry Wt as cation	< 0.00500	mg/kg	0.003	UKAS	Le	897
Triphenyl Tin : Dry Wt as cation	< 0.00400	mg/kg	0.002	UKAS	Le	897
Acenaphthene : Dry Wt	44.000	ug/kg	0.1	UKAS	Le	918
Acenaphthylene : Dry Wt	51.00	ug/kg	1	UKAS	Le	918
Anthracene : Dry Wt	350.0	ug/kg	20	UKAS	Le	918
Benzo(a)anthracene : Dry Wt	820.0	ug/kg	20	UKAS	Le	918
Benzo(a)pyrene : Dry Wt	720.0	ug/kg	20	UKAS	Le	918
Benzo(ghi)perylene : Dry Wt	490.00	ug/kg	6	UKAS	Le	918
Benzo(k)fluoranthene : Dry Wt	860.	ug/kg	100	UKAS	Le	918
Chrysene : Dry Wt	1100.0	ug/kg	30	UKAS	Le	918
Dibenzo(ah)anthracene : Dry Wt	170.00	ug/kg	3	UKAS	Le	918
Fluoranthene : Dry Wt	2400.0	ug/kg	20	UKAS	Le	918
Fluorene : Dry Wt	88.0	ug/kg	10	UKAS	Le	918
HCH -gamma : Dry Wt :- {Lindane}	< 2.00	ug/kg	2	UKAS	Le	918
Hexachlorobenzene : Dry Wt	< 0.900	ug/kg	0.9	UKAS	Le	918
Indeno(1,2,3cd)pyrene : Dry Wt	520.0	ug/kg	30	UKAS	Le	918
Naphthalene : Dry Wt	120.0	ug/kg	10	UKAS	Le	918
PCB - 008 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB - 020 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD

NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN

NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Page 17 of 22

National Laboratory Service

Analytical Report

Final Report

Report ID - 20008325 - 1

Reported on: 27-Jun-2008

PCB 28 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB - 035 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 52 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 077 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 101 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB - 105 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 118 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 126 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 128 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 138 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 149 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 153 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 156 : Dry Wt	< 0.900	ug/kg	0.9	UKAS	Le	918
PCB - 169 : Dry Wt	< 0.900	ug/kg	0.9	UKAS	Le	918
PCB - 170 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 180 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
Phenanthrene : Dry Wt	590.0	ug/kg	20	UKAS	Le	918
Pyrene : Dry Wt	1800.0	ug/kg	20	UKAS	Le	918
Equiv.Carbon No >10-12 Aliphatic fraction : Dry Wt	4640.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >10-12 Aromatic fraction : Dry Wt	3660.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >12-16 Aliphatic fraction : Dry Wt	25600.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >12-16 Aromatic fraction : Dry Wt	38800.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >16-21 Aliphatic fraction : Dry Wt	56900.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >16-21 Aromatic fraction : Dry Wt	257000.	ug/kg	400	UKAS	Le	920
Equiv.Carbon No >21-35 Aliphatic fraction : Dry Wt	112000.	ug/kg	3000	UKAS	Le	920
Equiv.Carbon No >21-35 Aromatic fraction : Dry Wt	368000.	ug/kg	3000	UKAS	Le	920
Equiv.Carbon No >35-40 Aliphatic fraction : Dry Wt	29400.	ug/kg	900	UKAS	Le	920
Equiv.Carbon No >35-40 Aromatic fraction : Dry Wt	98800.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Aliphatic extractable C10 - C40 : Dry Wt	228000.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Aromatic extractable C10 - C40 : Dry Wt	766000.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Total extractable C10 - C40 : Dry Wt {EPH}	994000.	ug/kg	4000	UKAS	Le	920
Dry Solids @ 30°C	52.600	%	0.5	None	Le	924
Sample Preparation	Report	Text		None	Le	924

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Page 18 of 22

Final Report

Report ID - 20008325 - 1

Reported on: 27-Jun-2008

Folder Number: 688326

National

Service

Science, Service, So

Laboratory

The sample was received in a 1l plastic pot weighing approx. 538g in total. The sample appeared to be a gritty,black sediment.

105.93g of the sample was taken for drying at <30degC which gave 58.47g of dried sample. The sample was sieved to <10mm before being crushed using a pestle and mortar and then sieved to <2mm.

1.40g of stones was discarded after sieving at 10mm. The sample was received unpreserved.

All parameters are determined on the air-dried (<30degC) portion except those requiring a wet sample fraction where as received (wet) sample was used.

Dry Weight (DW) results are reported as determined at <30degC.

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Page 19 of 22

Final Report

Report ID - 20008325 - 1

Reported on: 27-Jun-2008

Client: Moore Marine Folder No: 000688327 Comments:

BC6A and BC6B

Project: Sediment Analysis Sampled on: 22-May-08 @ 00:00

Carbon : Dry Wt 18000. mg/kg 1000 None Le 606 Nitrogen : Dry Wt as N 7120. mg/kg 200 None Le 606 Total Organic Carbon (TOC) : Dry Wt as C 14.400 % 0.8 UKAS Le 535 Arsenic : Dry Wt 19.60 mg/kg 1 UKAS Le 914 Cadmium : Dry Wt 1.660 mg/kg 0.1 UKAS Le 914 Chromium : Dry Wt 23.500 mg/kg 0.1 UKAS Le 914 Cobalt : Dry Wt 12.500 mg/kg 0.3 UKAS Le 914 Copper : Dry Wt 121.000 mg/kg 0.1 UKAS Le 914 Lead : Dry Wt 123.00 mg/kg 0.1 UKAS Le 914 Lead : Dry Wt 529.0000 mg/kg 0.1 UKAS Le 914 Manganese : Dry Wt 529.0000 mg/kg 2 UKAS Le 914 Mercury : Dry Wt <2.00 mg/kg 0.3 UKAS Le
Nitrogen : Dry Wt as N 7120. mg/kg 200 None Le 606 Total Organic Carbon (TOC) : Dry Wt as C 14.400 % 0.8 UKAS Le 535 Arsenic : Dry Wt 19.60 mg/kg 1 UKAS Le 914 Cadmium : Dry Wt 1.660 mg/kg 0.1 UKAS Le 914 Chromium : Dry Wt 23.500 mg/kg 0.1 UKAS Le 914 Cobalt : Dry Wt 12.500 mg/kg 0.3 UKAS Le 914 Copper : Dry Wt 121.000 mg/kg 0.1 UKAS Le 914 Lead : Dry Wt 123.00 mg/kg 0.1 UKAS Le 914 Lead : Dry Wt 529.0000 mg/kg 0.1 UKAS Le 914 Manganese : Dry Wt 529.0000 mg/kg 0.05 UKAS Le 914 Mercury : Dry Wt <2.00
Total Organic Carbon (TOC) : Dry Wt as C 14.400 % 0.8 UKAS Le 535 Arsenic : Dry Wt 19.60 mg/kg 1 UKAS Le 914 Cadmium : Dry Wt 1.660 mg/kg 0.1 UKAS Le 914 Chromium : Dry Wt 23.500 mg/kg 0.1 UKAS Le 914 Cobalt : Dry Wt 12.500 mg/kg 0.3 UKAS Le 914 Copper : Dry Wt 121.000 mg/kg 0.1 UKAS Le 914 Lead : Dry Wt 153.00 mg/kg 1 UKAS Le 914 Manganese : Dry Wt 529.0000 mg/kg 0.1 UKAS Le 914 Mercury : Dry Wt <2.00
Arsenic : Dry Wt 19.60 mg/kg 1 UKAS Le 914 Cadmium : Dry Wt 1.660 mg/kg 0.1 UKAS Le 914 Chromium : Dry Wt 23.500 mg/kg 0.1 UKAS Le 914 Cobalt : Dry Wt 12.500 mg/kg 0.1 UKAS Le 914 Copper : Dry Wt 121.000 mg/kg 0.3 UKAS Le 914 Lead : Dry Wt 153.00 mg/kg 1 UKAS Le 914 Manganese : Dry Wt 529.0000 mg/kg 0.05 UKAS Le 914 Mercury : Dry Wt <2.00
Cadmium : Dry Wt 1.660 mg/kg 0.1 UKAS Le 914 Chromium : Dry Wt 23.500 mg/kg 0.1 UKAS Le 914 Cobalt : Dry Wt 12.500 mg/kg 0.3 UKAS Le 914 Copper : Dry Wt 121.000 mg/kg 0.1 UKAS Le 914 Lead : Dry Wt 153.00 mg/kg 1 UKAS Le 914 Manganese : Dry Wt 529.0000 mg/kg 0.05 UKAS Le 914 Mercury : Dry Wt <2.00
Chromium : Dry Wt 23.500 mg/kg 0.1 UKAS Le 914 Cobalt : Dry Wt 12.500 mg/kg 0.3 UKAS Le 914 Copper : Dry Wt 121.000 mg/kg 0.1 UKAS Le 914 Lead : Dry Wt 153.00 mg/kg 1 UKAS Le 914 Manganese : Dry Wt 529.0000 mg/kg 0.05 UKAS Le 914 Mercury : Dry Wt <2.00
Cobalt : Dry Wt 12.500 mg/kg 0.3 UKAS Le 914 Copper : Dry Wt 121.000 mg/kg 0.1 UKAS Le 914 Lead : Dry Wt 153.00 mg/kg 1 UKAS Le 914 Manganese : Dry Wt 529.0000 mg/kg 0.05 UKAS Le 914 Mercury : Dry Wt <2.00
Copper : Dry Wt 121.000 mg/kg 0.1 UKAS Le 914 Lead : Dry Wt 153.00 mg/kg 1 UKAS Le 914 Manganese : Dry Wt 529.0000 mg/kg 0.05 UKAS Le 914 Mercury : Dry Wt < 2.00
Lead : Dry Wt 153.00 mg/kg 1 UKAS Le 914 Manganese : Dry Wt 529.0000 mg/kg 0.05 UKAS Le 914 Mercury : Dry Wt < 2.00
Manganese : Dry Wt 529.0000 mg/kg 0.05 UKAS Le 914 Mercury : Dry Wt < 2.00
Mercury : Dry Wt < 2.00 mg/kg 2 UKAS Le 914 Nickel : Dry Wt 21.800 ma/ka 0.3 UKAS Le 914
Nickel : Dry Wt 21.800 ma/ka 0.3 UKAS Le 914
Phosphorus : Dry Wt 1040.0 mg/kg 60 UKAS Le 914
Zinc : Dry Wt 372.000 mg/kg 0.5 UKAS Le 914
Sulphur, Free : Dry Wt 3970.0 mg/kg 10 UKAS Le 912
Dibutyl Tin : Dry Wt as cation < 0.02000 mg/kg 0.003 UKAS Le 897
Tributyl Tin : Dry Wt as cation < 0.02000 mg/kg 0.003 UKAS Le 897
Triphenyl Tin : Dry Wt as cation< 0.02000mg/kg0.002UKASLe897
Acenaphthene : Dry Wt 13.000 ug/kg 0.1 UKAS Le 918
Acenaphthylene : Dry Wt 11.00 ug/kg 1 UKAS Le 918
Anthracene : Dry Wt 70.0 ug/kg 20 UKAS Le 918
Benzo(a)anthracene : Dry Wt 290.0 ug/kg 20 UKAS Le 918
Benzo(a)pyrene : Dry Wt 330.0 ug/kg 20 UKAS Le 918
Benzo(ghi)perylene : Dry Wt180.00ug/kg6UKASLe918
Benzo(k)fluoranthene : Dry Wt310.ug/kg100UKASLe918
Chrysene : Dry Wt 340.0 ug/kg 30 UKAS Le 918
Dibenzo(ah)anthracene : Dry Wt63.00ug/kg3UKASLe918
Fluoranthene : Dry Wt 660.0 ug/kg 20 UKAS Le 918
Fluorene : Dry Wt 22.0 ug/kg 10 UKAS Le 918
HCH -gamma : Dry Wt :- {Lindane} < 2.00 ug/kg 2 UKAS Le 918
Hexachlorobenzene : Dry Wt< 0.900ug/kg0.9UKASLe918
Indeno(1,2,3cd)pyrene : Dry Wt 180.0 ug/kg 30 UKAS Le 918
Naphthalene : Dry Wt33.0ug/kg10UKASLe918
PCB - 008 : Dry Wt < 2.00 ug/kg 2 UKAS Le 918
PCB - 020 : Dry Wt < 2.00 ug/kg 2 UKAS Le 918

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD

NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN

NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Environment Agency

National Laboratory Service

Analytical Report

Final Report

Report ID - 20008325 - 1

Reported on: 27-Jun-2008

PCB 28 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB - 035 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 52 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 077 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 101 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB - 105 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 118 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 126 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 128 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 138 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 149 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB 153 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
PCB - 156 : Dry Wt	< 0.900	ug/kg	0.9	UKAS	Le	918
PCB - 169 : Dry Wt	< 0.900	ug/kg	0.9	UKAS	Le	918
PCB - 170 : Dry Wt	< 2.00	ug/kg	2	UKAS	Le	918
PCB 180 : Dry Wt	< 1.00	ug/kg	1	UKAS	Le	918
Phenanthrene : Dry Wt	120.0	ug/kg	20	UKAS	Le	918
Pyrene : Dry Wt	660.0	ug/kg	20	UKAS	Le	918
Equiv.Carbon No >10-12 Aliphatic fraction : Dry Wt	1470.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >10-12 Aromatic fraction : Dry Wt	988.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >12-16 Aliphatic fraction : Dry Wt	1560.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >12-16 Aromatic fraction : Dry Wt	5720.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >16-21 Aliphatic fraction : Dry Wt	24600.	ug/kg	300	UKAS	Le	920
Equiv.Carbon No >16-21 Aromatic fraction : Dry Wt	286000.	ug/kg	400	UKAS	Le	920
Equiv.Carbon No >21-35 Aliphatic fraction : Dry Wt	39500.	ug/kg	3000	UKAS	Le	920
Equiv.Carbon No >21-35 Aromatic fraction : Dry Wt	96100.	ug/kg	3000	UKAS	Le	920
Equiv.Carbon No >35-40 Aliphatic fraction : Dry Wt	16600.	ug/kg	900	UKAS	Le	920
Equiv.Carbon No >35-40 Aromatic fraction : Dry Wt	20700.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Aliphatic extractable C10 - C40 : Dry Wt	83800.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Aromatic extractable C10 - C40 : Dry Wt	410000.	ug/kg	3000	UKAS	Le	920
Hydrocarbons, Total extractable C10 - C40 : Dry Wt {EPH}	493000.	ug/kg	4000	UKAS	Le	920
Dry Solids @ 30°C	11.500	%	0.5	None	Le	924
Sample Preparation	Report	Text		None	Le	924

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Page 21 of 22

Final Report

Report ID - 20008325 - 1

Reported on: 27-Jun-2008

Folder Number: 688327

National

Service

Science, Service, Sc

Laboratory

The sample was received in a 1l plastic pot weighing approx. 727g in total. The sample appeared to be oily,twigs,leaves and plant matter and a large quantity of water.

104.02g of the sample was taken for drying at <30degC which gave 17.07g of dried sample. The sample was sieved to <10mm before being crushed using a pestle and mortar and then sieved to <2mm.

No waste was discarded after sieving at 10mm. The sample was received unpreserved.

All parameters are determined on the air-dried (<30degC) portion except those requiring a wet sample fraction where as received (wet) sample was used.

Dry Weight (DW) results are reported as determined at <30degC.

Key to Accreditation: UKAS = Methodology accredited to ISO/IEC 17025:2005, MCertS = Methodology accredited to MCertS Performance Standard for testing of soils, none = Methodology not accredited

Key to Lab Code: Le = Leeds, LI = Llanelli, No = Nottingham, Sx = Starcross, SC = Sub-Contracted outside NLS

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Llanelli Penyfai House 19 Penyfai Lane Furnace, Llanelli Carms SA15 4EL NLS Nottingham Meadow Lane Nottingham NG2 3HN NLS Starcross Staplake Mount Starcross Exeter EX6 8PE

Page 22 of 22

A2 2017 Ground Investigation

Avoca River – Marine Sediment Sampling and Analysis

Causeway Geotech Ltd 8 Drumahiskey Road, Ballymoney Co. Antrim, N. Ireland, BT53 7QL +44 (0)28 2766 6640 info@causewaygeotech.com www.causewaygeotech.com

ed in Northern Ireland. Company Number: NI610766 Approved: ISO 9001 • ISO 14001 • OHSAS 18001

CONTENTS

Document Control Sheet

Note on: Methods of describing soils and rocks & abbreviations used on exploratory hole logs

1	AUTHORITY4											
2	SCOPE4											
3	DESCRIPTION OF SITE4											
4	SITE OPERATIONS											
5	LABORATORY WORK											
6	GROUND CONDITIONS 7 6.1 General geology of the area 7 6.2 Ground types encountered during investigation of the site 7 6.3 Groundwater 7											
7	REFERENCES7											

APPENDICES

Appendix A	Site and exploratory hole location plans
Appendix B	Borehole logs
Appendix C	Geotechnical laboratory test results
Appendix D	Environmental laboratory test results

Document Control Sheet

Report No.:		17-0906							
Project Title:		Avoca River – Marine Sediment Sampling and Analysis							
Client:		Wicklow County Council							
Client's Repres	entative:	ARUP							
Revision:	A00	Status:	Draft for review	Issue Date:	17 January 2018				
Prepared by:		Reviewed by:		Approved by:					
ky	huberd.	Mint	HV-	Jam O l	luon.				
Lucy Newland BSc (Hons)		Neil Haggan BSc(Hons) MSc	FGS	Darren O'Mahony BSc MSc MIEI					

The works were conducted in accordance with:

UK Specification for Ground Investigation 2nd Edition, published by ICE Publishing (2012)

British Standards Institute (2015) BS 5930:2015, Code of practice for site investigations.

IS EN 1997-2:2007: Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing.

Geotechnical Society of Ireland (2016), Specification & Related Documents for Ground Investigation in Ireland

Laboratory testing was conducted in accordance with:

British Standards Institute BS 1377-2:1990, BS EN ISO 17892-1:2014, and BS EN ISO 17892-2:2014

METHODS OF DESCRIBING SOILS AND ROCKS

Soil and rock descriptions are based on the guidance in BS5930:2015, The Code of Practice for Site Investigation.

Abbreviations used on exploratory hole logs											
U	Nominal 100mm diameter undisturbed open tube sample (thick walled sampler)										
UT	Nominal 100mm diameter undisturbed open tube sample (thin walled sampler)										
Р	Nominal 100mm diameter undisturbed piston sample										
В	ulk disturbed sample										
LB	arge bulk disturbed sample										
D	Small disturbed sample										
С	Core sub-sample (displayed in the Field Records column on the logs)										
L	Liner sample from dynamic sampled borehole										
W	Water sample										
ES / EW	Soil sample for environmental testing / Water sample for environmental testing										
SPT (s)	Standard penetration test using a split spoon sampler (small disturbed sample obtained)										
SPT (c)	Standard penetration test using 60 degree solid cone										
x,x/x,x,x,x	Blows per increment during the standard penetration test. The initial two values relate to the seating drive (150mm) and the remaining four to the 75mm increments of the test length. The length achieved is stated (mm) for any test increment less than 75mm										
N=X	SPT blow count 'N' given by the summation of the blows 'X' required to drive the full test length (300mm)										
N=X/Z	Incomplete standard penetration test where the full test length was not achieved. The blows 'X' represent the total blows for the given test length 'Z' (mm)										
V VR	Shear vane test (borehole)Hand vane test (trial pit)Shear strength stated in kPaV: undisturbed vane shearstrengthVR: remoulded vane shear strength										
dd/mm/yy: 1.0 dd/mm/yy: dry	Date & water level at the borehole depth at the end of shift and the start of the following shift										
Abbreviations relating	g to rock core – reference Clause 44.4.4 of BS 5930: 2015										
TCR (%)	Total Core Recovery: Ratio of rock/soil core recovered (both solid and non-intact) to the total length of core run.										
SCR (%)	Solid Core Recovery: Ratio of solid core to the total length of core run. Solid core has a full diameter, uninterrupted by natural discontinuities, but not necessarily a full circumference and is measured along the core axis between natural fractures.										
RQD (%)	Rock Quality Designation: Ratio of total length of solid core pieces greater than 100mm to the total length of core run.										
FI	Fracture Index: Number of natural discontinuities per metre over an indicated length of core of similar intensity of fracturing.										
NI	Non Intact: Used where the rock material was recovered fragmented, for example as fine to coarse gravel size particles.										
AZCL	Assessed zone of core loss: The estimated depth range where core was not recovered.										
DIF	Drilling induced fracture: A fracture of non-geological origin brought about by the rock coring.										

Avoca River - Marine Sediment Sampling and Analysis

1 AUTHORITY

On the instructions of ARUP Consulting Engineers, ("the Client's Representative"), acting on the behalf of Wicklow County Council ("the Client"), a ground investigation was undertaken at the above location to provide geotechnical and environmental information to support dredging contractors in examining options for the appropriate disposal of the dredged sediment.

This report details the work carried out both on site and in the geotechnical and chemical testing laboratories; it contains a description of the site and the works undertaken, the exploratory hole logs and the laboratory test results.

All information given in this report is based upon the ground conditions encountered during the site investigation works, and on the results of the laboratory and field tests performed. However, there may be conditions at the site that have not been taken into account, such as unpredictable soil strata, contaminant concentrations, and water conditions between or below exploratory holes. It should be noted that groundwater levels usually vary due to seasonal and/or other effects and may at times differ to those recorded during the investigation. No responsibility can be taken for conditions not encountered through the scope of work commissioned, for example between exploratory hole points, or beneath the termination depths achieved.

This report was prepared by Causeway Geotech Ltd for the use of the Client and the Client's Representative in response to a particular set of instructions. Any other parties using the information contained in this report do so at their own risk and any duty of care to those parties is excluded.

2 SCOPE

The extent of the investigation, as instructed by the Client's Representative, included boreholes, soil sampling, in-situ and laboratory testing, and the preparation of a factual report on the findings.

3 DESCRIPTION OF SITE

As shown on the site location plan in Appendix A, the siteworks were conducted on the Avoca River. The exploratory hole locations were positioned both upstream and downstream of the 19 Arches Bridge in the town of Arklow, County Wicklow.

4 SITE OPERATIONS

4.1 Summary of site works

Site operations, which were conducted between 7th November and 10th November 2017, comprised:

- nine light cable percussion boreholes
- soil sampling for geotechnical and environmental analysis

The exploratory holes and in-situ tests were located as instructed by the Client's Representative, as shown on the exploratory hole location plan in Appendix A.

4.2 Marine Plant

The OCM Baby Blue spud leg barge was deployed for the duration of the site works. It is a small modular spud leg barge in a 4 pontoon configuration joined and secured with a simple pinning system. The two 10m hydraulic spud legs were raised and lowered as required for transit underneath the 19 Arches Bridge.

The barge was contracted and operated through Ocean Crest Marine for the duration of the site works. Boreholes were sunk through an integral moonpool through one of the pontoons which make up the main deck of the jack-up barge.

Ocean Crest Marine also provided the marine support vessel OCM Supporter to assist with crew transfers and barge movements respectively.

4.3 Boreholes

Nine boreholes (BH01-BH09) were put down to completion in minimum 200mm diameter using a Dando 3000 light cable percussion boring rig mounted on a floating barge. All boreholes were terminated at their scheduled completion depths.

Disturbed (bulk bag) samples were taken within the encountered strata. Environmental samples were taken at standard intervals, as directed by the Client's Representative.

No ground water was encountered during excavations.

Appendix B presents the borehole logs.

4.4 Surveying

The as-built exploratory hole positions were surveyed following completion of site operations by a Site Engineer from Causeway Geotech. Surveying was carried out using a Trimble R6 GPS system employing VRS and real time kinetic (RTK) techniques.

The plan coordinates (Irish National Grid) and ground elevation (mOD Malin) at each location are recorded on the individual exploratory hole logs. The exploratory hole plan presented in Appendix A shows these asbuilt positions.

5 LABORATORY WORK

Upon their receipt in the laboratory, all disturbed samples were carefully examined and accurately described and their descriptions incorporated into the borehole logs.

5.1 Geotechnical laboratory testing of soils

Laboratory testing of soils comprised:

• **soil classification:** moisture content measurement, Atterberg Limit tests and particle size distribution analysis.

Laboratory testing of soils samples was carried out in accordance with British Standards Institute (1990) *BS 1377:1990, Methods of test for soils for civil engineering purposes. Parts 1 to 9.*

The test results are presented in Appendix C.

5.2 Environmental laboratory testing of soils

Environmental testing, was conducted on selected environmental soil samples by Socotec at its laboratory in Burton-on-Trent, Staffordshire.

Testing was carried out for a range of determinants, including:

- Waste acceptance criteria (WAC) Suite
- Disposal at sea Suite
- Slufter Suite

Results of environmental laboratory testing are presented in Appendix D.

6 GROUND CONDITIONS

6.1 General geology of the area

Published geological mapping indicate the superficial deposits underlying the site comprise Alluvium. These deposits are underlain by slate and sandstone of the Kilmacrea Formation.

6.2 Ground types encountered during investigation of the site

A summary of the ground types encountered in the exploratory holes is listed below, in approximate stratigraphic order:

• Alluvium deposits: typically sandy subangular to subrounded fine to coarse gravel with low cobble content. Occasional gravelly sands with low to medium cobble content encountered down river of the 19 Arches Bridge. A soft grey sandy silty clay was also encountered in BH01 at a depth of 1.7m bgl.

6.3 Groundwater

Groundwater was not noted during drilling at any of the borehole locations. However, it should be noted that the casing used in supporting the borehole walls during drilling may have sealed out any groundwater strikes encountered and the possibility of encountering groundwater during excavation works should not be ruled out. Seasonal variation in groundwater levels should also be factored into design considerations.

7 REFERENCES

Geotechnical Society of Ireland (2016), Specification & Related Documents for Ground Investigation in Ireland

IS EN 1997-2: 2007: Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing.

BS 1377: 1990: Methods of test for soils for civil engineering purposes. British Standards Institution.

BS 5930: 2015: Code of practice for ground investigations. British Standards Institution.

BS EN 1997-2: 2007: Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing. British Standards Institution.

BS EN ISO 14688-1: 2002: Geotechnical investigation and testing - Identification and classification of soil - Part 1 Identification and description. British Standards Institution.

APPENDIX A Site and exploratory hole location plans

Avoca River Marine Sediment Sampling and Analysis Report No.: 17-0906

Avoca River Marine Sediment Sampling and Analysis Report No.: 17-0906

APPENDIX B Borehole logs

				Project No.:		Project Name:				No.:		
	CAL	IC				17-090	6	Avoca	River - Marine Sediment Sampling and Analysis		BH0:	1
	CAU	-0	iEO	TECH		Coordi	nates:	Client:				of 1
				32449	1.98 E	Wicklo	Wicklow County Council					
Method Plant Used Top Base					Base	17358	8 74 N	Client'	s Representative:	Sca	le: 1	:50
Cable Percussion Dando 3000 0.00 2.20						ARUP		Driller: AH		Ч		
			Ground	Ground Level:		2017	Logger: NH					
Depth	Sample /	Casing	Water			Level	Depth (m)		Description	B	Destation	
(m)	Tests	(m)	(m)	Field Ke	coras	(mOD)	(Thickness)	Legend	Description	Ma	васкпі	
0.10	£53						Ē	مې مې مې	with medium cobble content. Sand is fine to coarse. Cobbles are			
0.50	ES4			l			-	a X • aX	subangular to subrounded.			0.5
0.80 - 1.20	D1						-	° × ° °×	- - β]
1.00	ES5						(1.70)	° × ° °×				- 1.0
				l			-	a X. , aX.	9]
							-	° × ° °×	5 9			- 1.5 —
1 00 2 20	53					-3.04	1.70	×	Soft grev slightly sandy slightly gravelly silty CLAY. Sand is fine to coarse.	-		
2.00	ES6			l			(0.50)	×	Gravel is subangular to subrounded fine to coarse.			2.0
						-3.54	2.20		Fnd of Borehole at 2.20m	-		4]
							-					2.5
							-					
							-					3.0
				l			-					
												3.5
							-					-
							-					4.0
							F					-
							-					4.5
							-					-
							- - -					5.0
							-					5.0 -
							-					5.5
							-					5.3
							-					
							-					- b.u
							-					
												6.5
							-					
							-					7.0
							-					
							-					7.5 -
							-					
							-					8.0 -
							-					
												8.5 -
							-					
							-					9.0
							-					-
												9.5 —
							-					-
											<u> </u>	
Remarks Deck to Bed = 1.	70m								Water Strikes Chis Struck at (m) Casing to (m) Time (min) Rose to (m) From (m)	To (I	; Detail	S ne (hh:mm)
									Water Added Casing Details			
Terminated at sc	heduled	dept	h						2.20 200			

						Project No.:		Project Name:				No.:
	CAL	IS				17-0906		Avoca	River - Marine Sediment Sampling and Analysis		BH0	2
	CAU	-0	iec	TECH		Coordi	nates:	Client:			Sheet 1 of 1	
Method Plant Used Top Base							4.16 E	Wicklo				
MethodPlant UsedTopBaseCable PercussionDando 30000.002.20					Base	173617 67 N		Client's	s Representative:	Scale: 1:50		.:50
						Group		ARUP		_Dri	ller: /	ΑH
						-1.06	-1.06 mOD		2017	Logger: NH		
Depth	Sample /	Casing Depth	Water Depth	Field Re	ecords	Level	Depth (m)	Legend	Description	ater	Backfi	1
(m)	Tests	(m)	(m)			(mOD)	(Thickness)	•ו •×	Grey slightly silty very sandy subangular to subrounded fine to coarse	3		/ -
							-	~ × •×: •∝	GRAVEL with low cobble content. Sand is fine to coarse. Cobbles are subangular to subrounded.			
0.50	ES3						-	•ו•×	9 			0.5 —
0.80 - 1.20	B1						-	• X • X • X	9			- -
							- (2.20)	e×. و م×				1.0
							-	• × • • • × •	β 1			
1.50	ES4						-	• × • • × •	9 1			, 1.5 — -
1.80 - 2.20	B2						-	• X • • X	9 - - -			
						2.20	-					2.0
						-3.26	2.20		End of Borehole at 2.20m			
							-					2.5 -
							-					-
							-					3.0
							-					-
							-					3.5 —
							-					-
							-					4.0 -
							-					45
							-					-
							-					5.0 -
							-					-
							-					5.5 —
							-					-
							-					6.0
							-					-
							-					6.5 -
							-					7.0
												7.5
							-					
												8.0 -
							-					8.5 —
							-					9.0
							-					9.5 —
Remarks Deck to Bed = 1	40m								Water Strikes Ch Struck at (m) Casing to (m) Time (min) Rose to (m) From (m)	isellin To	g Detai	S ne (hh:mm)
Seek to beu - 1.	.011											
									Water Added Casing Details			
Terminated at so	heduled	dent	h						rrom (m) to (m) To (m) Diam (mm) 2.20 200			

				Project No.:		Projec	Borehole No.:				
A:A	CAL	IC				17-090	6	Avoca	BH03		
	CAU	-0	ΞEO	TECH		Coordi	nates:	Client:	Sheet 1 of 1		
						324683.01 E		Wicklo	w County Council	_	
Method	MethodPlant UsedTopBaseCable PercussionDando 30000.003.20						9.38 N	Client'	s Representative:	Scale: 1:50	
cable releasion					Group		ARUP		Driller: AH		
					-1.08 mOD		08/11/	2017	Logger: NH		
Depth	Sample /	Casing Depth	Water Depth	Field Re	cords	Level	Depth (m)	Legend	Description	be Back	fill
(m)	Tests	(m)	(m)			(mOD)	(Thickness)	۰×، م×	Grey slightly silty sandy subangular to subrounded GRAVEL with low	3	ž –
							-	۹ ×. ۲۰ ۹×	cobble content. Sand is fine to coarse. Cobbles are subangular to subrounded.		
0.50	ES4						-	م×. م×. م ×			0.5
0.80 - 1.20	B1						(1.00)	• X: • • • X	9 9		-
							(1.80) 	۰×، مح ف	- 9 -		1.0
								a× ∘a×	9		
1.50	ES5						-	• X: • •X	β 1		1.5 —
1.80 - 2.20	B2					-2.88	1.80	م. × م.	9 Grev sandy subangular to subrounded GRAVEL with low cobble content.	-	
							-	a ° °	Sand is fine to coarse. Cobbles are subangular to subrounded.		2.0
							-	a 9 9 0	9 - - -		
2.50	ES6						(1.40)	a	9 - - -		2.5
2.80 - 3.20	B3						-	°,			
							-				3.0 — -
						-4.28	- 3.20	· ·	End of Borehole at 3.20m		
							-				3.5 —
							-				
							-				4.0
							-				-
							-				4.5 —
							-				
							-				5.0 -
							-				
							-				5.5 —
							-				
							-				6.0
							-				
							-				6.5
							-				-
											7.0
							-				-
							-				7.5 —
							-				
							-				8.0
							-				
							-				8.5
							-				
							-				9.0
							-				9.3
							-				
Pomarka									Water Strikes Chi	selling Det	ails
Deck to Bed = 1.7	70m								Struck at (m) Casing to (m) Time (min) Rose to (m) From (m)	To (m)	Time (hh:mm)
									Water Added Casing Details From (m) To (m) To (m) Diam (mm)		
Terminated at scl	heduled	dept	h						3.20 200		

				Project No.:		Projec	Borehole No.:				
AA.	CAL	10				17-0906		Avoca	ВН	104	
	CAU	-0	E O	TECH		Coordi	nates:	Client:	Sheet 1 of 1		
		0		I L CII		32471	2.61 E	Wicklo			
Method	Plar	nt U	sed	Тор	Base	173592 49 N		Client'	s Representative:	Scale: 1:50	
Cable Percussion	ו Dan	do 3	000	0.00	3.20	11335	2.45 1	ARUP		Driller:	AH
						Ground	d Level:	Dates:	70017	Logger: NH	
Depth	Sample / Casing Water		-U.4.	Depth (m)	U8/11/		5				
(m)	Tests	Depth (m)	Depth (m)	Field Ke	cords	(mOD)	(Thickness)	Legena	Description	Васк	fill
							-	× × × ×	content. Gravel is subangular to subrounded fine to coarse. Cobbles are		
0.50	ES4						-	×°×°××	subangular to subrounded.		0.5 —
0.90 - 1.20	01							×.~~~ ×			
0.80 - 1.20	ы						-	×°×°××			1.0
							(2.50)	וו××	2		
1.50	ES5							×°×°××			1.5 —
100 220	רס						-	×·××××			
1.80 - 2.20	ΒZ						-	× × ×	2 2 2 2		2.0
							-	×.•^``× ****			
2.50	ES6					-2.95	- 2.50	×.•^ × × *			2.5
2.00 2.00	22							a×. , a×.	Grey slightly silty very sandy subangular to subrounded fine to coarse GRAVEL with medium cobble content. Sand is fine to coarse. Cobbles are		
2.80 - 3.20	B3						(0.70)	م×: ۵ م×	subangular to subrounded.		3.0
						-3.65	3.20	•a.×. • a.×.	Fnd of Borehole at 3.20m	-	
							-				3.5 —
							-				
							-				4.0
							-				
							-				4.5
							-				
							-				5.0
							-				
							-				5.5 —
							-				
							[6.0
							-				
							-				6.5 —
							-				
							-				7.0
							-				7.5 —
							-				8.0
							-				8.5 —
							-				9.0
							-				9.5 —
							-				
		_					-			_	
Remarks		<u> </u>							Water Strikes Chir	selling Det	ails
Deck to Bed = 0.9	}0m								Struck at (m) Casing to (m) Time (min) Rose to (m) From (m)	To (m)	Time (hh:mm)
									Water Added Casing Details		
									From (m) To (m) To (m) Diam (mm)		
Terminated at sch	heduled	dept	h								
						Project	: No.:	Project	Boreh	ole No.:	
------------------	----------	--------------	--------------	----------	--------	---------	-------------	--	---	----------	------------------
AR.	CAL	IC				17-090	6	Avoca	River - Marine Sediment Sampling and Analysis	B	H05
	CAU	-0	E O	TECH		Coordi	nates:	Client:		Shee	et 1 of 1
		0		I L OIT		32475	6.22 E	Wicklo	w County Council		
Method	Plai	nt U	sed	Тор	Base	17347	8 09 N	Client'	s Representative:	Scale:	1:50
Cable Percussion	n Dan	do 3	000	0.00	3.20	1/34/1	5.05 1	ARUP		Drille	r: AH
						Ground	d Level:	Dates:	2017		r• NH
Denth	Sample /	Casing	Water			-1.04	4 mOD	09/11/	2017	LUgge	. NIT
(m)	Tests	Depth (m)	Depth (m)	Field Re	ecords	(mOD)	(Thickness)	Legend	Description	A Ba	ckfill
							-	 	Grey sandy subangular to subrounded fine to coarse GRAVEL with medium cobble content. Sand is fine to coarse. Cobbles are subangular to		-
0.50	FS/I						-		subrounded.		
0.50	234						-				
0.80 - 1.20	B1						-	0 0 0			- -
1.00	E33						-				
							(2.60)				[11] - [12] -
							-				1.5 -
1.80 - 2.20	B2						-				
2.00	ES6						-				2.0
							-				
						-3.64	- 2.60			-	2.5 —
2.80 - 3.20	B3						(0.60)		GRAVEL with low cobble content. Sand is fine to coarse. Cobbles are		
3.00	ES7						(0.60)	**************************************	subangular to subrounded.		3.0 —
						-4.24	3.20	*T_A1 _ 1215	End of Borehole at 3.20m		-
							-				3.5 -
							-				-
							-				4.0
							-				-
							-				4.5 —
							-				-
							-				5.0 —
							-				-
							-				5.5 -
							-				-
							-				6.0 -
							-				-
							-				-
							-				
							-				
							-				7.0
							-				-
							Ē				7.5 -
							-				
							-				8.0 -
											-
							-				8.5 —
							ŧ				-
							-				9.0
							-				
											9.5 —
							-				-
							-			\vdash	
Remarks	I	1	1	I		I	I	1	Water Strikes Chis	elling D	etails
Deck to Bed = 1.	50m								Struck at (m) Casing to (m) Time (min) Rose to (m) From (m)	To (m)	Time (hh:mm)
									Water Added Casing Details From (m) To (m) To (m) Diam (mm)		
Terminated at sc	heduled	dept	h						3.20 200		

						Project	t No.:	Project	Boreho	le No.:	
	-	10	-=-	AIAV	r	17-090	16	Avoca	River - Marine Sediment Sampling and Analysis	BH	106
	CAL	72				Coordi	nates:	Client:		Shoot	1 of 1
		G	EO	TECH		32479	3.11 E	Wicklo	w County Council	Sileet	1011
Method	Plar	nt U	sed	Тор	Base	1		Client's	s Representative:	Scale:	1:50
Cable Percussion	n Dan	do 3	000	0.00	3.20	17351	6.15 N	ARUP		Drillori	٨Ц
						Ground	d Level:	Dates:			АП
						-1.14	4 mOD	09/11/	/2017	Logger:	NH
Depth	Sample /	Casing Depth	Water Depth	Field Re	ecords	Level	Depth (m)	Legend	Description	ater Back	cfill
(m)	lests	(m)	(m)	<u> </u>		(mOD)	(Inickness)	××	Grey very gravelly fine to coarse SAND with medium cobble content.	5	- 22
	1			1			-	×.°^` × •× • ×	Gravel is subangular to subrounded fine to coarse. Cobbles are subangular		巖 -
0.50	ES4			1			-	×.°×° × × *			0.5 —
0.80 - 1.20	B1			1			(1.30)	×.°×°××	r. 0		
1.00	ES5			1			-	×.~``*``×	- - -		1.0
	1			1			-	× × ×	- 2 2		
				1		-2.44	- 1.30	×.~×**	Grey slightly silty very gravelly fine to coarse SAND with medium cobble	- (1955) 2773	
	1			1				×.~×° ×	subangular to subrounded fine to coarse. Cobbles are subangular to subrounded fine to coarse. Cobbles are		1.5 -
1.80 - 2.20	B2			1			(1.10)	×~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
2.00	ES6			1			-	** * ****	4 - 2		2.0
	1			1			-	× × ×			
	1			1		-3.54	- 2.40	•וו	Grey slightly silty very sandy subangular to subrounded fine to coarse	-	2.5 —
2 80 2 20	D 2			1				م× ، م×	GRAVEL with medium cobble content. Sand is fine to coarse. Cobbles are subangular to subrounded.		
2.80 - 3.20	B3 FS7			1			- (0.80)	***** ****			3.0
5.00	237			1		-4.34	3.20	• ו • • • × •		1973) 1973)	
	1			1					End of Borehole at 3.2um		
	1			1							3.5 —
	1			1							
	1			1			F				4.0 —
	1			1			Ē				
	1			1							4.5 —
	1			1							
	1			1							-
	1			1			F				5.0
	1			1			E				
	1			1			Ē				5.5
	1			1							
	1			1			-				6.0
	1			1			-				
	1			1			F				6.5
	1			1			E				0.5
	1			1			[
	1			1			- -				7.0
	1			1							-
	1			1			-				7.5
	1			1							
	1			1			-				8.0 -
	1			1			E l				-
	1			1							
	1			1			-				8.5 —
	1			1							
	1			1			-				9.0
	1			1			[
	1			1			_				9.5
	1			1			-				-
	1			1			-				-
Remarks	CO								Water Strikes Chis Struck at (m) Casing to (m) Time (min) Rose to (m) From (m)	telling Det	ails Time (hh:mm)
Deck to Bed = 1.6	som										
									Water Added Casing Datails		1
									Water Added Casing Details From (m) To (m) To (m) Diam (mm)		1
Terminated at sc	heduled	dept ^r	h						3.20 200		1

						Project	t No.:	Projec	Boreho	le No.:	
	-	16	-	AZAV		17-090	6	Avoca	River - Marine Sediment Sampling and Analysis	ВН	107
	CAL	-0	FO	TECH		Coordi	nates:	Client:		Sheet	1 of 1
		-		12011		32478	5.93 E	Wicklo	w County Council		
Method	Pla	nt U	sed	Тор	Base	17341 [,]	9 18 N	Client'	s Representative:	Scale:	1:50
Cable Percussio	n Dan	do 3	000	0.00	3.20	113.2	3.10 1	ARUP		Driller:	AH
						Ground	d Level:	Dates:	2017	Logger:	мн
Denth	Sample /	Casing	Water			-0.0:	9 mOD	09/11/	1	LU85CI.	
(m)	Tests	Depth (m)	Depth (m)	Field Re	cords	(mOD)	(Thickness)	Legend	Description	Back	fill
							-	а у Рах.	GRAVEL with low cobble content. Sand is fine to coarse. Cobbles are		
							Ē	° × ° ×	subangular to subrounded.		0.5 —
0 00 1 20	D1							م×. ، م×. م	Э		
1.00	ES4						(1.70) 	° × ° °×	- - β		1.0
							-	م× ، م×			
							-	° ⊂ × ° ⊂ ×	5 9		1.5 -
1 00 0 00						-2.39	- 1.70	° × ° 0	Grew very sandy subangular to subrounded fine to coarse GRAVEL with low		
2.00	ES5						-	9 0 0 a 0	cobble content. Sand is fine to coarse. Cobbles are subangular to		2.0
							-	9 9 9 9 9 9	subrounded.		
							(1.50)	а а	1 9		2.5
2.00 2.20							-	a °a	ν 9		
2.80 - 3.20	B3						-	م م	9 9		3.0
						-3.89	- 3.20	a • ° °	End of Borehole at 3 20m	1975	
							-				3.5
							-				
							-				4.0
							-				
							-				4.5 —
							-				
							-				5.0
							-				5.5 —
											-
							-				6.0
							-				
							-				6.5
							-				
							-				7.0
							-				-
											7.5 —
							-				
											8.0
							-				-
											8.5 -
							-				-
											9.0
							-				-
							-				9.5 —
							-				-
	<u> </u>	\vdash					-				
Remarks			·						Water Strikes Chi: Strick at (m) Cause to (m) Time (min) Rose to (m) From (m)	selling Det	ails
Deck to Bed = 1.	10m										
									Water Added Casing Details		
									From (m) To (m) To (m) Diam (mm) 3.20 200		
Terminated at sc	heduled	dept!	h								

				Project	: No.:	Project	Boreh	ole No.:			
	CAL	10				17-090	6	Avoca	River - Marine Sediment Sampling and Analysis	E	BH08
	CAU	-0	i F O	TECH		Coordi	nates:	Client:		She	et 1 of 1
						32491	3.24 E	Wicklo	w County Council		
Method	Pla	nt U	sed	Тор	Base	17339	6.70 N	Client'	s Representative:	Scale	1:50
Cable Percussion	n Dan	do 3	000	0.00	3.20	1/335		ARUP		Drille	r: AH
						Ground	d Level:	Dates:	2017	10006	r NH
Depth	Sample /	Casing	Water			-2.1.	Depth (m)	10/11/		100000	
(m)	Tests	Depth (m)	Depth (m)	Field Re	ecords	(mOD)	(Thickness)	Legend	Description	a te sa Ba	ckfill
								, a , a , a , x , a , a , a , a , a , a , a , a	GRAVEL with low cobble content. Sand is fine to coarse. Cobbles are		
							-	a × • • • ×	subangular to subrounded.		0.5 -
0.00 1.20	D 4						-	م× ، م× ،			
1.00	ES4						_ (1.70) 	° × ° °×	- - 9		1.0
							-	م× ، م× م ×			-
							-	° × ° °×			
4 00 0 00						-3.82	1.70	× ×	Grow slightly silty your growelly find to coorse SAND with low cobble	- 8	
1.80 - 2.20 2.00	B2 FS5						-	$\times \overset{\times}{} \overset{\times}{} \overset{\times}{} \overset{\times}{} \overset{\times}{} \overset{\times}{}$	content. Gravel is subangular to subrounded fine to coarse. Cobbles are		2.0
2100	200						-	×.~×° ×	subangular to subrounded.		
							(1.50)	×.~×~ ×			-
							-	×.°×° ×			<u> </u>
2.80 - 3.20	B3						-	×··×			
						-5.32	- 3.20	×.°^ . × •× . *			<u></u>
							-		End of Borenole at 3.20m		-
							-				5.5 -
							-				-
							-				4.0
							-				-
							-				4.5 -
							-				-
							-				5.0
							-				-
							-				5.5 -
							-				-
							-				6.0 -
							-				-
							-				6.5 -
							-				-
							-				7.0
							-				-
							-				7.5 -
							-				-
											8.0 -
							-				
											8.5 -
											-
							-				9.0 -
							-				-
							-				9.5 —
							-				-
Remarks	50m								Water Strikes Chi Struck at (m) Casing to (m) Time (min) Rose to (m) From (m)	selling D	etails Time (hh:mm)
שפנג נט שפמ = 2.6	JUIN										
									Water Added Casing Details		
									From (m) To (m) To (m) Diam (mm) 3.20 200		
Terminated at sc	heduled	dept	h							1	

						Project	t No.:	Project Name:						Bor	ehole	e No.:	
	-	10		AZAV		17-090	6	Avoca	River - Marine Sedir	ment Sampl	ing and	Analys	is			BHC)9
	CAU	22				Coordi	nates:	Client:							51	hoot 1	l of 1
		G		ILCII		32502	0.97 E	Wicklo	w County Council							leet .	
Method	Plai	nt U	sed	Тор	Base	17225		Client'	s Representative:						Sca	le:	1:50
Cable Percussio	n Dan	do 3	000	0.00	3.20	1/325	5.80 N	ARUP							Dri	ller	ΔН
						Groun	d Level:	Dates:							1		
						-2.9	5 mOD	10/11/	2017						Log	ger:	NH
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Re	cords	Level (mOD)	Depth (m) (Thickness)	Legend		Desc	ription				Water	Backfi	ill
								0_0	Black very gravelly fine	e to coarse SAN	ND with lo	w cobbl	e and boul	der			- 1
							-	0.0	boulders are subangula	ar to subround	ounded fi led.	ne to co	arse. Cob	les and			
0.50	ES4						-	0.0	* 0 -								0.5 —
0.80 - 1.20	B1						(1.70)	0.0	* 0								-
1.00	ES5						-	0.0	* 0								1.0
							-	000	÷ 0								- -
								000	÷ 0.								1.5 —
1.80 - 2.20	B2					-4.65	1.70	× 0 * -	Grey slightly silty very	gravelly fine to	o coarse S	AND wit	h low cobl	ole	-		
2.00	ES6						-	× × × × ×	content. Gravel is suba	angular to subr	ounded fi	ne to co	arse. Cobb	oles are			2.0
							-	×.° × × ×		iueu.							
							(1.50)	× • × × • ×	* 0								2.5
							-	×.°^ × × ×	a -								
2.80 - 3.20	B3						-	×.°´×									<u>_</u>
3.00	E57					-6 15	- 3 20	×.~×~ ×									3.0
						0.15				End of Bore	hole at 3.	20m					-
							-										3.5 —
							-										
							-										4.0 -
							-										-
							-										4.5 —
							-										-
							-										5.0
							[
							-										
							-										-
							-										6.0
							-										-
							-										-
							-										
							-										-
							_										7.0
							-										-
							-										7.5 —
							-										_
							-										8.0
							-										-
							-										8.5
							-										-
							-										9.0
							-										
							-										9.5
							Ē										
			\square				-								\square		
Remarks		<u> </u>									Water St	rikes		Chi	sellin	g Deta	ils
Deck to Bed = 3.	30m									Struck at (m) Cas	sing to (m) 1	ïme (min)	Rose to (m)	From (m)	To (m) T	ime (hh:mm)
										Water Ad	ded	Casing	Details				
Terminated at co	hedulad	denti	h									10 (11)	sistin (ittini)	1			

APPENDIX C Geotechnical laboratory test results

LABORATORY REPORT

REPORT

4043

Contract Number: PSL17/6099

Report Date: 11 January 2018

- Client's Reference: 17-0906
- Client Name: Causeway Geotech 8 Drumahiskey Road Ballymoney Co.Antrim BT53 7QL

For the attention of: Stephen Watson

Contract Title:Avoca River, Marine Sediment Sampling and AnalysisDate Received:14/12/2017Date Commenced:14/12/2017Date Completed:11/1/2018

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

R Gunson (Director) A Watkins (Director)

R Berriman (Quality Manager)

L Knight (Senior Technician) S Eyre (Senior Technician) A Fry (Senior Technician)

Page 1 of

5 – 7 Hexthorpe Road, Hexthorpe, Doncaster DN4 0AR tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642 e-mail: rgunson@prosoils.co.uk awatkins@prosoils.co.uk

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
BH01	1	В	0.80	1.20	Brown sandy slightly silty GRAVEL.
BH01	2	В	1.80	2.20	Dark brown slightly gravelly slightly sandy very clayey PEAT.
BH02	1	В	0.80	1.20	Brown very sandy slightly silty GRAVEL.
BH02	2	В	1.80	2.20	Brown very sandy slightly silty GRAVEL.
BH03	1	В	0.80	1.20	Brown sandy slightly silty GRAVEL.
BH03	2	В	1.80	2.20	Brown very sandy GRAVEL.
BH03	3	В	2.80	3.20	Brown very sandy slightly silty GRAVEL.
BH04	1	В	0.80	1.20	Brown slightly silty SAND & GRAVEL.
BH04	2	В	1.80	2.20	Brown very gravelly slightly silty SAND.
BH04	3	В	2.80	3.20	Brown very sandy slightly silty GRAVEL.
BH05	1	В	0.80	1.20	Brown sandy GRAVEL with some cobbles.
BH05	2	В	1.80	2.20	Brown sandy slightly silty GRAVEL.
BH05	3	В	2.80	3.20	Brown very sandy slightly silty GRAVEL.
BH06	1	В	0.80	1.20	Brown very gravelly SAND.
BH06	2	В	1.80	2.20	Brown very gravelly slightly silty SAND.
BH06	3	В	2.80	3.20	Brown very sandy slightly silty GRAVEL.
BH07	1	В	0.80	1.20	Brown very sandy slightly silty GRAVEL.
BH07	2	В	1.80	2.20	Brown very sandy GRAVEL.
BH08	1	В	0.80	1.20	Brown very sandy slightly silty GRAVEL.

E.			Contract No:
	LPSL.	Avoca Pivor - Marina Sodimont Sampling and Analysis	PSL17/6099
	Drefessional Sails Laboratory	Avoca Kivei - Marine Seument Samping and Analysis	Client Ref:
4043	Professional Solis Laboratory		17-0906

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
BH08	3	В	2.80	3.20	Brown very gravelly slightly silty SAND.
BH09	1	В	0.80	1.20	Brown very sandy GRAVEL.
BH09	2	В	1.80	2.20	Brown very gravelly slightly silty SAND.

â			Contract No:
	PSL	Avoca Bivor - Marina Sadimont Sampling and Analysis	PSL17/6099
	Drefessional Sails Laboratory	Avoca Kiver - Marme Seument Sampling and Analysis	Client Ref:
4043	Professional Solis Laboratory		17-0906

SUMMARY OF SOIL CLASSIFICATION TESTS

(BS1377 : PART 2 : 1990)

					Moisture	Linear	Particle	Liquid	Plastic	Plasticity	Passing	
Hole	Sample	Sample	Тор	Base	Content	Shrinkage	Density	Limit	Limit	Index	.425mm	Remarks
Number	Number	Туре	Depth	Depth	%	%	Mg/m ³	%	%	%	%	
			m	m	Clause 3.2	Clause 6.5	Clause 8.2	Clause 4.3/4	Clause 5.3	Clause 5.4		
BH01	1	В	0.80	1.20	4.2				NP			
BH01	2	В	1.80	2.20	190			194	95	99	92	Extremely high plasticity CE.
BH02	1	В	0.80	1.20	3.1				NP			
BH02	2	В	1.80	2.20	5.2				NP			
BH03	1	В	0.80	1.20	4.8				NP			
BH03	2	В	1.80	2.20	3.1				NP			
BH03	3	В	2.80	3.20	3.9				NP			
BH04	1	В	0.80	1.20	6.9				NP			
BH04	2	В	1.80	2.20	10				NP			
BH04	3	В	2.80	3.20	6				NP			
BH05	1	В	0.80	1.20	2.7				NP			
BH05	2	В	1.80	2.20	2.5				NP			
BH05	3	В	2.80	3.20	2.2				NP			
BH06	1	В	0.80	1.20	4.4				NP			
BH06	2	В	1.80	2.20	6.7				NP			
BH06	3	В	2.80	3.20	5.1				NP			
BH07	1	В	0.80	1.20	3.5				NP			
BH07	2	В	1.80	2.20	4.1				NP			
BH08	1	В	0.80	1.20	3.6				NP			

SYMBOLS : NP : Non Plastic

*: Liquid Limit and Plastic Limit Wet Sieved.

SUMMARY OF SOIL CLASSIFICATION TESTS

(BS1377 : PART 2 : 1990)

Hole	Sample	Sample	Тор	Base	Moisture Content	Linear Shrinkage	Particle Density	Liquid Limit	Plastic Limit	Plasticity Index	Passing .425mm	Remarks
Number	Number	Туре	Depth	Depth	%	%	Mg/m ³	%	%	%	%	
			m	m	Clause 3.2	Clause 6.5	Clause 8.2	Clause 4.3/4	Clause 5.3	Clause 5.4		
BH08	3	В	2.80	3.20	10				NP			
BH09	1	В	0.80	1.20	4.2				NP			
BH09	2	В	1.80	2.20	19				NP			

SYMBOLS : NP : Non Plastic

*: Liquid Limit and Plastic Limit Wet Sieved.

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

Professional Soils Laboratory

Avoca River - Marine Sediment Sampling and Analysis

of

BS1377 : Part 2 : 1990

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

of

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

Professional Soils Laboratory

Avoca River - Marine Sediment Sampling and Analysis

of

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

Professional Soils Laboratory

Avoca River - Marine Sediment Sampling and Analysis

of

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

Professional Soils Laboratory

Avoca River - Marine Sediment Sampling and Analysis

of

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

PSL005

4043

Professional Soils Laboratory

17-0906

of

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

Professional Soils Laboratory

Avoca River - Marine Sediment Sampling and Analysis

of

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

Professional Soils Laboratory

Avoca River - Marine Sediment Sampling and Analysis

of

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

Professional Soils Laboratory

Avoca River - Marine Sediment Sampling and Analysis

of

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

Professional Soils Laboratory

Avoca River - Marine Sediment Sampling and Analysis

of

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

Professional Soils Laboratory

Avoca River - Marine Sediment Sampling and Analysis

of

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

of

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

Professional Soils Laboratory

Avoca River - Marine Sediment Sampling and Analysis

of

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

Professional Soils Laboratory

Avoca River - Marine Sediment Sampling and Analysis

of

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

Professional Soils Laboratory

of

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

Professional Soils Laboratory

Avoca River - Marine Sediment Sampling and Analysis

of

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

Professional Soils Laboratory

Avoca River - Marine Sediment Sampling and Analysis

of

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

Professional Soils Laboratory

PSL005

4043

Page

17-0906

of

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

Professional Soils Laboratory

Avoca River - Marine Sediment Sampling and Analysis

of

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

Avoca River - Marine Sediment Sampling and Analysis

of

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

Professional Soils Laboratory

Avoca River - Marine Sediment Sampling and Analysis

of

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

Professional Soils Laboratory

Avoca River - Marine Sediment Sampling and Analysis

of

APPENDIX D

Environmental laboratory test results

Our Ref: EFS/181258 (Ver. 1) Your Ref: 17-0906

January 11, 2018

Environmental Chemistry SOCOTEC UK Limited Bretby Business Park Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

Neil Haggan Causeway Geotech Ltd 8 Drumahiskey Road Ballymoney United Kingdom **BT53 7QL**

For the attention of Neil Haggan

Dear Neil Haggan

Sample Analysis - Avoca River Sediment Sampling

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

Where appropriate the samples will be kept until 16/01/18 when they will be discarded. Please call 01283 554547 for an extension of this date. Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with SOCOTEC UK Limited (Multi-Sector Services) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for SOCOTEC UK Limited

THEOLODVINE

J Colbourne Project Co-ordinator 01283 554547

TEST REPORT

Report No. EFS/181258 (Ver. 1)

Causeway Geotech Ltd 8 Drumahiskey Road Ballymoney United Kingdom BT53 7QL

Site: Avoca River Sediment Sampling

The 27 samples described in this report were registered for analysis by SOCOTEC UK Limited on 05-Dec-2017. This report supersedes any versions previously issued by the laboratory. The analysis was completed by: 11-Jan-2018

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Pages 2 to 5) Table of PCB Congener Results (Pages 6 to 13) Table of GRO Results (Page 14) Table of TPH (Si) banding (std) (Pages 15 to 16) Table of PAH Analysis (Pages 17 to 22) Analytical and Deviating Sample Overview (Pages 23 to 24) Table of Additional Report Notes (Page 25) Table of Method Descriptions (Page 26) Table of Report Notes (Page 27) Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of SOCOTEC UK Lim (Tim Barnes

Operations Director Energy & Waste Services

Date of Issue: 11-Jan-2018

Tests marked '^' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected. SOCOTEC UK Limited accepts no responsibility for any sampling not carried out by our personnel.

	Unit Method Code		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	µg/kg	mg/kg	% M/M	%	ug Sn/kg
	Metho Method Reporti	od Codes :	GROHSA	ICPMSS	ICPMSS	ICPMSS 0.04	ICPMSS 0.5	ICPMSS	ICPMSS	ICPMSS 0.015	ICPMSS	ICPMSS 2	ICPSOIL 36	PAHSED 1	TPHUSSI 20	WSLM59	ANC 0.12	OGSNSED 1
	UKAS A	ccredited :	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No
LAB ID Number CL/	Client Sample Description	Sample Date	GRO (AA) by HSA GC-FID	Copper (MS) Sediment	Arsenic (MS) Sediments	Cadmium (MS) Sediments	Chromium (MS) Sediments	Lead (MS) Sediments	Manganese (MS) Sediments	Mercury (MS) Sediments	Nickel (MS) Sediments	Zinc (MS) Sediments	Iron (Sediments)	PAH by MS Dti	TPH by GCFID (AR/SI)	Total Organic Carbon (Sediment)	Carbonate %	Dibutyl Tin (Sediments)
1786201	BH01 0.10	07-Nov-17	Req §	27.9	18.8	0.13	30.3	30.9	683.8	0.02	19.5	103.3	33600 §	Req	Req §	0.21	5.28	<1
1786202	BH01 1.00	07-Nov-17	Req §	21	10.3	0.12	19	17.2	588.2	<0.015	16.5	88.6	29800 §	Req	Req §	0.33	1.68	<1
1786203	BH02 0.50	08-Nov-17	Req §	46	14.5	0.16	19.2	38.7	897.2	<0.015	16.3	122.2	35100 §	Req	Req §	0.13	1.44	<1
1786204	BH02 1.50	08-Nov-17	Req §	49.2	16.5	0.18	17.6	36.7	659.1	<0.015	14.3	102.7	30500 §	Req	Req §	0.16	4.56	<1
1786205	BH03 0.50	08-Nov-17	Req §	45.1	20.8	0.11	25	47.5	674.8	<0.015	21	117.3	42500 §	Req	Req §	0.18	4.32	<1
1786206	BH03 1.50	08-Nov-17	Req §	55.1	18.7	0.1	23.4	46.9	747.9	<0.015	19.8	122.5	38400 §	Req	Req §	0.30	<0.12	<1
1786207	BH03 2.50	08-Nov-17	Req §	39.4	14.5	0.1	21.1	38.7	731.2	<0.015	18	102.7	36100 §	Req	Req §	0.12	2.40	<1
1786208	BH04 0.50	08-Nov-17	Req §	47.4	15.2	0.22	24.7	42.9	744	<0.015	19.1	103.5	34200 §	Req	Req §	0.16	1.20	<1
1786209	BH04 1.50	08-Nov-17	Req §	33.2	20	0.49	25.3	23.5	839.9	<0.015	19.4	146.4	37200 §	Req	Req §	0.16	6.24	<1
1786210	BH04 2.50	08-Nov-17	Req §	20.7	8.6	0.33	13.1	14.1	443.8	<0.015	12.6	93.4	21200 §	Req	Req §	0.09	8.64	<1
1786211	BH05 0.50	09-Nov-17	Req §	36	14.2	0.1	19.9	27.6	824.9	<0.015	15.3	114.5	36100 §	Req	Req §	0.48	5.04	<1
1786212	BH05 1.00	09-Nov-17	Req §	27.8	17.3	0.11	15.6	20.8	580.6	0.04	14.2	126	31000 §	Req	Req §	0.15	2.88	<1
1786213	BH05 2.00	09-Nov-17	Req §	40.1	20.4	0.06	17.1	16.8	619.4	<0.015	14.3	129.1	32300 §	Req	Req §	0.15	2.64	<1
1786214	BH05 3.00	09-Nov-17	Req §	18.3	11.3	0.2	19.9	9.8	620.8	<0.015	17.6	145.7	32800 §	Req	Req §	0.12	6.96	<1
1786215	BH06 0.50	09-Nov-17	Req §	30.1	16.8	0.11	19.2	18.4	755.9	<0.015	15.5	130.7	32000 §	Req	Req §	0.14	7.20	<1
1786216	BH06 1.00	09-Nov-17	Req §	23.6	15.8	0.1	17.4	12.8	723.9	<0.015	14.3	117.1	30400 §	Req	Req §	0.13	1.44	<1
1786217	BH06 2.00	09-Nov-17	Req §	25.7	19.1	0.13	13.4	13.3	628.2	0.03	11.7	107.2	30700 §	Req	Req §	0.15	3.12	<1
1786218	BH06 3.00	09-Nov-17	Req §	92.5	20.2	0.61	20	18.3	688.4	<0.015	16.3	119.7	36400 §	Req	Req §	0.11	<0.12	<1
1786219	BH07 1.00	09-Nov-17	Req §	28.4	18	0.07	19.6	17.8	731.7	<0.015	17.4	121	32000 §	Req	Req §	0.12	5.28	<1
1786220	BH07 2.00	09-Nov-17	Req §	26.3	22.7	0.1	18.6	24.7	626	<0.015	15.8	115.4	29500 §	Req	Req §	0.11	0.24	<1
				lient Name Causeway Geotech Ltd								Sam	ple Ana	lysis				
Bretby Business Park, Ashby Road Date Printed 21-Dec-2017																		
	Burton-on-Trent, Staffordshire, DE15 0YZ								Report Number EFS/181258									
	Tel +44 (0) 1283 554400			Avoca River Sediment Sampling					Table Number 1									
	Fax +44 (0) 1283 554422										•							

		Units :	ua Sn/ka	ua/ka	ua/ka									
	Metho	d Codes :	OGSNSED	PCBMS3Q	PCBMS3Q									
	Method Reportin	ng Limits :	1	0.08	0.08									
	UKAS Ad	credited :	No	No	No									
LAB ID Number CL/	Client Sample Description	Sample Date	Tributyl Tin (Sediments)	Organochlorine Pesticides (Marine Sediments)	PCB- 7 Congeners (Marine Sediments)									
1786201	BH01 0.10	07-Nov-17	<1	Req	Req									
1786202	BH01 1.00	07-Nov-17	<1	Req	Req									
1786203	BH02 0.50	08-Nov-17	<1	Req	Req									
1786204	BH02 1.50	08-Nov-17	<1	Req	Req									
1786205	BH03 0.50	08-Nov-17	<1	Req	Req									
1786206	BH03 1.50	08-Nov-17	<1	Req	Req									
1786207	BH03 2.50	08-Nov-17	<1	Req	Req									
1786208	BH04 0.50	08-Nov-17	<1	Req	Req									
1786209	BH04 1.50	08-Nov-17	<1	Req	Req									
1786210	BH04 2.50	08-Nov-17	<1	Req	Req									
1786211	BH05 0.50	09-Nov-17	<1	Req	Req									
1786212	BH05 1.00	09-Nov-17	<1	Req	Req									
1786213	BH05 2.00	09-Nov-17	<1	Req	Req									
1786214	BH05 3.00	09-Nov-17	<1	Req	Req									
1786215	BH06 0.50	09-Nov-17	<1	Req	Req									
1786216	BH06 1.00	09-Nov-17	<1	Req	Req									
1786217	BH06 2.00	09-Nov-17	<1	Req	Req									
1786218	BH06 3.00	09-Nov-17	<1	Req	Req									
1786219	BH07 1.00	09-Nov-17	<1	Req	Req									
1786220	BH07 2.00	09-Nov-17	<1	Req	Req									
SOCOTEC			Client N Contact	ame	Causeway Geotech Ltd					Sample Analysis				
.	Bretby Business Park, Ashby Road										Date Printed	21-	Dec-2017	
	Burton-on-Trent, Staffordshire, DE15 0YZ								Report Number	E	FS/181258			
	Tel +44 (0) 1283 554400			Avoca River Sediment Sampling				Table Number		1				
Fax +44 (0) 1283 554422														

	Moth	Units :	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	µg/kg	mg/kg	% M/M	% ANC	ug Sn/kg
	Method Reporti	ng Limits :	0.2	0.5	0.5	0.04	0.5	0.5	0.5	0.015	0.5	2	36	1	20	0.02	0.12	1
	UKAS A	ccredited :	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No
LAB ID Number CL/	Client Sample Description	Sample Date	GRO (AA) by HSA GC-FID	Copper (MS) Sediment	Arsenic (MS) Sediments	Cadmium (MS) Sediments	Chromium (MS) Sediments	Lead (MS) Sediments	Manganese (MS) Sediments	Mercury (MS) Sediments	Nickel (MS) Sediments	Zinc (MS) Sediments	Iron (Sediments)	PAH by MS Dti	TPH by GCFID (AR/Si)	Total Organic Carbon (Sediment)	Carbonate %	Dibutyl Tin (Sediments)
1786221	BH08 1.00	10-Nov-17	Req §	76.9	24.9	0.81	28.5	69.4	620.7	<0.015	19.1	179.6	36100 §	Req	Req §	0.12	5.52	<1
1786222	BH08 2.00	10-Nov-17	Req §	47.9	13	0.22	17.6	39.1	513.7	<0.015	14.8	122.2	27800 §	Req	Req §	0.16	4.08	<1
1786223	BH09 0.50	10-Nov-17	Req §	42.8	16.3	0.26	24	40.2	684.8	<0.015	17.1	127.5	32600 §	Req	Req §	0.22	3.12	<1
1786224	BH09 2.00	10-Nov-17	Req §	54	18.8	0.3	19.4	62	653.2	<0.015	17.2	189.6	34800 §	Req	Req §	0.16	2.40	<1
1786225	CRM		Req §	57.21 §	18.16 §	1.682 §	67.43 §	80.02 §	1184 §	0.786 §	32.57 §	316.1 §	26900 §	Req §		3.1905 §		93
1786226	QC Blank		Req §	<0.5 §	<0.5 §	<0.04 §	<0.5 §	<0.5 §	<0.5 §	<0.015 §	<0.5 §	<2 §	<36 §	Req §	Req §	<0.02 §		<1
1786227	Reference Material (% Recovery)		Req §	96 §	97 §	94 §	93 §	100 §	97 §	92 §	101 §	102 §	101 §	Req §	Req §	101 §	102.6	78
	SOCOTEC Society Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554420 Fax +44 (0) 1283 554422		Client N Contact	ame Av	Causev Neil Hagg OCA R	vay Geot _{Jan} Liver S	ech Ltd	ent S	ampl	ing		Date Prin Report N Table Nu	Sample Analysis Printed 21-Dec-2017 ort Number EFS/181258 e Number 1					

	Mash	Units :	ug Sn/kg	µg/kg	µg/kg							
	Method Reporti	na Limits :	UGSNSED	0.08	0.08							
	UKAS A	ccredited :	No	No	No							
LAB ID Number CL/	Client Sample Description	Sample Date	Tributyl Tin (Sediments)	Organochlorine Pesticides (Marine Sediments)	PCB- 7 Congeners (Marine Sediments)							
1786221	BH08 1.00	10-Nov-17	<1	Req	Req							
1786222	BH08 2.00	10-Nov-17	<1	Req	Req							
1786223	BH09 0.50	10-Nov-17	<1	Req	Req							
1786224	BH09 2.00	10-Nov-17	<1	Req	Req							
1786225	CRM		71	Req	Req							
1786226	QC Blank		<1	Req	Req							
1786227	Reference Material (% Recovery)		82	Req	Req							
	SOCOTEC		Client N	ame	Causev	vay Geot	ech Ltd		Sam	ple Ana		
	Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422		Contact	Av	Neil Hagg	iver (Sediment S	Sampling	 Date Printed21-Dec-2017Report NumberEFS/181258Table Number1			

Customer and Site Details:	Causeway Geotech Ltd: Avoca River Sediment Sampling	Matrix:	Sediment
Job Number:	S18_1258	Date Booked in:	05-Dec-17
QC Batch Number:	170019	Date Extracted:	16-Dec-17
Directory:	181217.TQ1	Date Analysed:	18-Dec-17
Method:	Ultrasonic	UKAS Accredited:	No

	Compounds marked * are not UKAS or MCerts accredited									
Sample ID :	CL1786201	CL1786202	CL1786203	CL1786204	CL1786205					
Client ID :	BH01 0.10	BH01 1.00	BH02 0.50	BH02 1.50	BH03 0.50					
Compound		Concentration (µg/kg)								
alpha-HCH	<0.10	<0.10	<0.10	<0.10	<0.10					
Hexachlorobenzene	<0.10	<0.10	<0.10	<0.10	<0.10					
gamma-HCH	<0.10	<0.10	<0.10	<0.10	<0.10					
p,p'-DDE	<0.10	<0.10	<0.10	<0.10	<0.10					
Dieldrin	<0.10	<0.10	<0.10	<0.10	<0.10					
p,p'-DDD	<0.10	<0.10	<0.10	<0.10	<0.10					
p,p'-DDT	<0.10	<0.10	<0.10	<0.10	<0.10					

Customer and Site Details:	Causeway Geotech Ltd: Avoca River Sediment Sampling	Matrix:	Sediment
Job Number:	S18_1258	Date Booked in:	05-Dec-17
QC Batch Number:	170019	Date Extracted:	16-Dec-17
Directory:	181217.TQ1	Date Analysed:	18-Dec-17
Method:	Ultrasonic	UKAS Accredited:	No

	Compounds marked * are not UKAS or MCerts accredited									
Sample ID :	CL1786206	CL1786207	CL1786208	CL1786209	CL1786210					
Client ID :	BH03 1.50	BH03 2.50	BH04 0.50	BH04 1.50	BH04 2.50					
Compound		Concentration (µg/kg)								
alpha-HCH	<0.10	<0.10	<0.10	<0.10	<0.10					
Hexachlorobenzene	<0.10	<0.10	<0.10	<0.10	<0.10					
gamma-HCH	<0.10	<0.10	<0.10	<0.10	<0.10					
p,p'-DDE	<0.10	<0.10	<0.10	<0.10	<0.10					
Dieldrin	<0.10	<0.10	<0.10	<0.10	<0.10					
p,p'-DDD	<0.10	<0.10	<0.10	<0.10	<0.10					
p,p'-DDT	<0.10	<0.10	<0.10	<0.10	<0.10					

Customer and Site Details:	Causeway Geotech Ltd: Avoca River Sediment Sampling	Matrix:	Sediment
Job Number:	S18_1258	Date Booked in:	05-Dec-17
QC Batch Number:	170019	Date Extracted:	16-Dec-17
Directory:	181217.TQ1	Date Analysed:	18-Dec-17
Method:	Ultrasonic	UKAS Accredited:	No

Compounds marked * are not U	KAS or MCerts accredited	
014700040	01 1700010	

Sample ID :	CL1786211	CL1786212	CL1786213	CL1786214	CL1786215
Client ID :	BH05 0.50	BH05 1.00	BH05 2.00	BH05 3.00	BH06 0.50
Compound			Concentration (µg/kg)		
alpha-HCH	<0.10	<0.10	<0.10	<0.10	<0.10
Hexachlorobenzene	<0.10	<0.10	<0.10	<0.10	<0.10
gamma-HCH	<0.10	<0.10	<0.10	<0.10	<0.10
p,p'-DDE	<0.10	<0.10	<0.10	<0.10	<0.10
Dieldrin	<0.10	<0.10	<0.10	<0.10	<0.10
p,p'-DDD	<0.10	<0.10	<0.10	<0.10	<0.10
p,p'-DDT	<0.10	<0.10	<0.10	<0.10	<0.10

Customer and Site Details:	Causeway Geotech Ltd: Avoca River Sediment Sampling	Matrix:	Sediment
Job Number:	S18_1258	Date Booked in:	05-Dec-17
QC Batch Number:	170019	Date Extracted:	16-Dec-17
Directory:	181217.TQ1	Date Analysed:	18-Dec-17
Method:	Ultrasonic	UKAS Accredited:	No

Compounds marked * are not UKAS or MCerts accredited							
CI 1786216	CI 1786217	CI 1786218					

Sample ID :	CL1786216	CL1786217	CL1786218	CL1786219	CL1786220						
Client ID :	BH06 1.00	BH06 2.00	BH06 3.00	BH07 1.00	BH07 2.00						
Compound		Concentration (µg/kg)									
alpha-HCH	<0.10	<0.10	<0.10	<0.10	<0.10						
Hexachlorobenzene	<0.10	<0.10	<0.10	<0.10	<0.10						
gamma-HCH	<0.10	<0.10	<0.10	<0.10	<0.10						
p,p'-DDE	<0.10	<0.10	<0.10	<0.10	<0.10						
Dieldrin	<0.10	<0.10	<0.10	<0.10	<0.10						
p,p'-DDD	<0.10	<0.10	<0.10	<0.10	<0.10						
p,p'-DDT	<0.10	<0.10	<0.10	<0.10	<0.10						

Customer and Site Details:	Causeway Geotech Ltd: Avoca River Sediment Sampling	Matrix:	Sediment
Job Number:	S18_1258	Date Booked in:	05-Dec-17
QC Batch Number:	170020	Date Extracted:	16-Dec-17
Directory:	181217.TQ1	Date Analysed:	18-Dec-17
Method:	Ultrasonic	UKAS Accredited:	No

Compounds marked	* are not UKAS or MCerts accredited	

Sample ID :	CL1786221	CL1786222	CL1786223	CL1786224	CL1786225						
Client ID :	BH08 1.00	BH08 2.00	BH09 0.50	BH09 2.00	CRM						
Compound		Concentration (µg/kg)									
alpha-HCH	<0.10	<0.10	<0.10	<0.10	<0.10						
Hexachlorobenzene	<0.10	<0.10	<0.10	<0.10	8.85						
gamma-HCH	<0.10	<0.10	<0.10	<0.10	<0.10						
p,p'-DDE	<0.10	<0.10	<0.10	<0.10	2.50						
Dieldrin	<0.10	<0.10	<0.10	<0.10	0.35						
p,p'-DDD	<0.10	<0.10	<0.10	<0.10	3.73						
p,p'-DDT	<0.10	<0.10	<0.10	<0.10	0.19						

Г

Customer and Site Details:	Causeway Geotech Ltd: Avoca River Sediment Sampling	Matrix:	Sediment
Job Number:	S18_1258	Date Booked in:	05-Dec-17
QC Batch Number:	170020	Date Extracted:	16-Dec-17
Directory:	181217.TQ1	Date Analysed:	18-Dec-17
Method:	Ultrasonic	UKAS Accredited:	No

Compounds marked * are not UKAS or MCerts accredited

Sample ID : Client ID :	CL1786226 QC Blank	CL1786227 Reference Material (% Recovery)					
Compound	Concentration (μg/kg)						
alpha-HCH	<0.10	89					
Hexachlorobenzene	<0.10	98					
gamma-HCH	<0.10	92					
p,p'-DDE	<0.10	83					
Dieldrin	<0.10	89					
p,p'-DDD	<0.10	90					
p,p'-DDT	<0.10	99					

Polychlorinated Biphenyls (congeners)

Customer and Site Details: Job Number: QC Batch Number: Directory:	Causeway Geotech Ltd: Avoca River S18_1258 170019 181217PCB TO1	Sediment Samp	ling	Matrix:SoDate Booked in:05-Date Extracted:16-Date Analyzada10-			Soil 05-Dec-17 16-Dec-17 18-Dec-17	Soil 05-Dec-17 16-Dec-17 18 Dec 17	
Method:	Ultrasonic				Date Analyse	ч.	10 200 17		
		Compounds	marked * are i	not UKAS or N	Certs accred	ited			
				Con	centration,	(µg/kg)			
Sample ID	Customer ID	PCB28*	PCB52*	PCB101*	PCB118*	PCB153*	PCB138*	PCB180*	
CL1786201	BH01 0.10	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	
CL1786202	BH01 1.00	<0.08	<0.08	< 0.08	<0.08	<0.08	<0.08	<0.08	
CL1786203	BH02 0.50	<0.08	<0.08	< 0.08	<0.08	<0.08	<0.08	<0.08	
CL1786204	BH02 1.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	
CL1786205	BH03 0.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	
CL1786206	BH03 1.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	
CL1786207	BH03 2.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	
CL1786208	BH04 0.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	
CL1786209	BH04 1.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	
CL1786210	BH04 2.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	
CL1786211	BH05 0.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	
CL1786212	BH05 1.00	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	
CL1786213	BH05 2.00	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	
CL1786214	BH05 3.00	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	
CL1786215	BH06 0.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	
CL1786216	BH06 1.00	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	
CL1786217	BH06 2.00	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	
CL1786218	BH06 3.00	< 0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	
CL1786219	BH07 1.00	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	
CL1786220	BH07 2.00	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	

Polychlorinated Biphenyls (congeners)

Customer and Site Details: Job Number: QC Batch Number: Directory: Method:	Causeway Geotech Ltd: Avoca River S S18_1258 170020 181217PCB.TQ1 Ultrasonic		Matrix: Date Booked Date Extracte Date Analyse	in: ed: d:	Soil 05-Dec-17 16-Dec-17 18-Dec-17			
		Compounds	marked * are i	not UKAS or N	ICerts accredi	ited		
				Con	centration,	(µg/kg)		
Sample ID	Customer ID	PCB28*	PCB52*	PCB101*	PCB118*	PCB153*	PCB138*	PCB180*
CL1786221	BH08 1.00	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1786222	BH08 2.00	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1786223	BH09 0.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1786224	BH09 2.00	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1786225	CRM	2.87	4.60	4.87	3.34	4.10	4.22	2.48
CL1786226	QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1786227	Reference Material (% Recovery)	73	117	104	106	105	109	106
	-		-					

Gasoline Range Organics (BTEX and Aliphatic Carbon Ranges)

Customer and Site Details:	Causeway Geotech Ltd : Avoca River Sediment Sampling
Job Number:	S18_1258
Directory:	D:\TES\DATA\2017\1215HSA_GC9\121517 2017-12-15 16-39-29\133B3301.D
Method:	Headspace GCFID

Matrix:	Soil
Date Booked in:	05-Dec-17
Date extracted:	15-Dec-17
Date Analysed:	16-Dec-17, 02:05:56

				* Sample da	ita with an asteri	sk are not UK	(AS accredite	ed.				
			Concentration, (mg/kg) - as wet weight						Aliphatics			
	Sample ID	Client ID	Benzene	Toluene	Ethyl benzene	m/p-Xylene	o-Xylene	C5 - C6	>C6 - C7	>C7 - C8	>C8 - C10	Total GRO
*	CL1786201	BH01 0.10	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
*	CL1786202	BH01 1.00	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
*	CL1786203	BH02 0.50	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
*	CL1786204	BH02 1.50	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
*	CL1786205	BH03 0.50	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
*	CL1786206	BH03 1.50	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
*	CL1786207	BH03 2.50	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
*	CL1786208	BH04 0.50	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
*	CL1786209	BH04 1.50	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
*	CL1786210	BH04 2.50	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
*	CL1786211	BH05 0.50	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
*	CL1786212	BH05 1.00	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
*	CL1786213	BH05 2.00	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
*	CL1786214	BH05 3.00	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
*	CL1786215	BH06 0.50	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
*	CL1786216	BH06 1.00	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
*	CL1786217	BH06 2.00	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
*	CL1786218	BH06 3.00	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
*	CL1786219	BH07 1.00	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
*	CL1786220	BH07 2.00	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
*	CL1786221	BH08 1.00	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
*	CL1786222	BH08 2.00	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
*	CL1786223	BH09 0.50	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
	CL1786224	BH09 2.00	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
	CL1786226	QC Blank	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
	CL1786227	Reference Material (% Recovery)	92	92	96	97	92	100	109	112	107	106

Note: Benzene elutes between C6 and C7, toluene elutes between C7 and C8, ethyl benzene and the xylenes elute between C8 and C9.

Each BTEX compound is deducted from the appropriate band to give the aliphatic fractions, however aromatic compounds may still be contributing to these fractions

ALIPHATIC / AROMATIC FRACTION BY GC/FID

Customer and Site Details: Job Number: QC Batch Number: Directory: Method:	Causeway Geotech Ltd : Avoca River S18_1258 171347 C:\CHEM32\1\DATA\121917TPH_GC Ultra Sonic	Sediment Samp	ling Separation: Eluents: -12-19 09-54-58	Silica gel Hexane, DCM \OnlineEdited04	46B.D			Matrix: Date Booked in: Date Extracted: Date Analysed:	Soil 05-Dec-17 15-Dec-17 19-Dec-17, 19:1	4:33			
					Co	ncentration, (mg/kg) - as w	vet weight					
* This sample data is not U	KAS accredited.	>C8	- C10	>C10	- C12	>C12	- C16	>C16 -	C21	>C21	- C35	>C8	- C40
Sample ID	Client ID	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics
* CL1786213	BH05 2.00	<4.08	<4	<4.08	<4	<4.08	<4	<4.08	<4	<8.94	<8.76	<20.4	<20
* CL1786214	BH05 3.00	<4.04	<4	<4.04	<4	<4.04	5.24	<4.04	<4	<8.85	<8.76	<20.2	<20
* CL1786215	BH06 0.50	<4.04	<4	<4.04	<4	<4.04	<4	<4.04	<4	<8.85	<8.76	<20.2	<20
* CL1786216	BH06 1.00	<4.08	<4	<4.08	<4	<4.08	<4	<4.08	<4	<8.94	<8.76	<20.4	<20
* CL1786217	BH06 2.00	<4.12	<4	<4.12	<4	<4.12	<4	<4.12	<4	<9	<8.76	<20.6	<20
* CL1786218	BH06 3.00	<4.08	<4	<4.08	<4	<4.08	5.53	4.93	<4	25.3	12.8	33.2	21.9
* CL1786219	BH07 1.00	<4.12	<4	<4.12	<4	<4.12	7.65	<4.12	<4	<9	<8.76	<20.6	<20
* CL1786220	BH07 2.00	<4.12	<4	<4.12	<4	<4.12	<4	<4.12	<4	<9	<8.76	<20.6	<20
* CL1786221	BH08 1.00	<4.12	<4	<4.12	<4	<4.12	5.2	<4.12	<4	<9	<8.76	<20.6	<20
* CL1786222	BH08 2.00	<4.04	<4	<4.04	<4	<4.04	<4	<4.04	<4	11.2	<8.76	<20.2	<20
* CL1786223	BH09 0.50	<4.08	<4	<4.08	<4	<4.08	4.96	<4.08	<4	11.2	<8.76	<20.4	<20
* CL1786224	BH09 2.00	<4.08	<4	<4.08	<4	<4.08	7.11	<4.08	<4	<8.94	<8.76	<20.4	<20
* CL1786226	QC Blank	<4.04	<4	<4.04	<4	<4.04	<4	<4.04	<4	<8.85	<8.76	<20.2	<20
* CL1786227	Reference Material (% Recovery)	95%	102%	90%	132%*	88%	102%	90%	94%	95%	100%	90%	100%

ALIPHATIC / AROMATIC FRACTION BY GC/FID

Customer and Site Details: Job Number: QC Batch Number: Directory: Method:	Causeway Geotech Ltd : S18_1258 171347 C:\CHEM32\1\DATA\121 Ultra Sonic	: Avoca River Sec	diment Sampling Separation: Eluents: 121917 2017-12	Silica gel Hexane, DCM -19 09-54-58\On	lineEdited042E	3.D		Matrix: Date Booked in: Date Extracted: Date Analysed:	Soil 05-Dec-17 15-Dec-17 19-Dec-17, 18:2	24:50			
				1	Cor	ncentration, (mg/kg) - as w	vet weight				1	
* This sample data is not U	KAS accredited.	>C8	- C10	>C10	- C12	>C12	- C16	>C16 -	C21	>C21	- C35	>C8	- C40
Sample ID	Client ID	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics
* CL1786201	BH01 0.10	<4.12	<4	<4.12	<4*	<4.12	<4	<4.12	<4	<9	<8.76	<20.6	<20
* CL1786202	BH01 1.00	<4.12	<4	<4.12	<4*	<4.12	<4	<4.12	<4	<9	<8.76	<20.6	<20
* CL1786203	BH02 0.50	<4.08	<4	<4.08	<4*	<4.08	7.4	<4.08	<4	18.9	<8.76	21.6	<20
* CL1786204	BH02 1.50	<4.12	<4	<4.12	<4*	<4.12	5.76	<4.12	<4	<9	<8.76	<20.6	<20
* CL1786205	BH03 0.50	<4.12	<4	<4.12	<4*	<4.12	<4	<4.12	<4	<9	<8.76	<20.6	<20
* CL1786206	BH03 1.50	<4.08	<4	<4.08	<4*	<4.08	4.59	<4.08	<4	<8.94	<8.76	<20.4	<20
* CL1786207	BH03 2.50	<4.12	<4	<4.12	<4*	<4.12	5.33	<4.12	<4	<9	<8.76	<20.6	<20
* CL1786208	BH04 0.50	<4	<4	<4	<4*	<4	6.26	<4	<4	<8.76	<8.76	<20	<20
* CL1786209	BH04 1.50	<4.12	<4	<4.12	<4*	<4.12	<4	<4.12	<4	<9	<8.76	<20.6	<20
* CL1786210	BH04 2.50	<4.08	<4	<4.08	<4*	<4.08	5.88	<4.08	<4	20.3	<8.76	25.1	<20
* CL1786211	BH05 0.50	<4.08	<4	<4.08	<4*	<4.08	<4	<4.08	<4	<8.94	<8.76	<20.4	<20
* CL1786212	BH05 1.00	<4	<4	<4	<4*	<4	6.31	<4	<4	<8.76	<8.76	<20	<20

UKAS accredited?: Yes

		Sample ID :	CL1786226a	CL1786227a	CL1786226b	CL1786227b	CL1786225	CL1786201	CL1786202	CL1786203	CL1786204
		-		Reference		Reference					
		Station :	QC Blank	Material (%	QC Blank	Material (%	1941b	BH01 0.10	BH01 1.00	BH02 0.50	BH02 1.50
				Recovery)		Recovery)					
PAH Fraction	# PAH	Mass									
Naphthalene	1	128	<1	105.8	<1	100.1	563.5	1.7	<1	2.7	77.6
C1 Naphthalenes *	2	142	<1	105.1	<1	97.3	302.9	1.6	1.2	1.7	48.9
C2 Naphthalenes *		156	<1	N.D	<1	N.D	208.8	1.4	<1	1.5	29.3
C3 Naphthalenes *		170	<1	N.D	<1	N.D	168.0	1.3	<1	1.6	18.9
C4 Naphthalenes *		184	<1	N.D	<1	N.D	111.8	1.1	<1	2.2	11.2
Sum Naphthalenes *			0	105	0	99	1355	7	1	10	186
Phenanthrene / Anthracene	2	178	<1	111.0	<1	108.9	498.7	20.4	1.4	8.7	204.8
C1 178 *		192	<1	N.D	<1	N.D	301.6	7.9	1.2	4.1	60.4
C2 178 *		206	<1	N.D	<1	N.D	245.5	4.8	1.3	3.8	31.7
C3 178 *		220	<1	N.D	<1	N.D	180.1	2.6	<1	3.0	21.0
Sum 178 *			0	111	0.0	108.9	1225.9	35.6	3.9	19.7	317.9
Dibenzothiophene		184	<1	112	<1	105.2	45.0	1.4	<1	<1	12.0
C1 Dibenzothiophenes *		198	<1	N.D	<1	N.D	68.1	1.1	<1	1.1	8.2
C2 Dibenzothiophenes *		212	<1	N.D	<1	N.D	108.0	1.4	<1	2.0	9.2
C3 Dibenzothiophenes *		226	<1	N.D	<1	N.D	66.5	<1	<1	1.6	6.8
Sum Dibenzothiophenes *			0	112	0.0	105.2	287.6	3.9	0.0	4.6	36.2
Fluoranthene / pyrene	2	202	<1	108	<1	104.9	1025.5	53.0	9.1	19.3	281.3
C1 202 *		216	<1	N.D	<1	N.D	289.6	9.3	1.9	5.3	71.9
C2 202 *		230	<1	N.D	<1	N.D	204.5	7.5	1.9	3.6	35.6
C3 202 *		244	<1	N.D	<1	N.D	124.2	2.9	<1	1.6	15.6
Sum 202 *			0	108	0.0	104.9	1643.8	72.8	12.8	29.9	404.3
Benzoanthracene / Chrysene	2	228	<1	108	<1	104.3	641.5	25.6	3.4	8.5	122.3
C1 228 *		242	<1	N.D	<1	N.D	291.0	6.9	1.7	3.9	42.0
C2 228 *		256	<1	N.D	<1	N.D	163.9	3.2	1.1	2.9	18.2
Sum 228 *			0	108	0.0	104.3	1096.3	35.6	6.2	15.3	182.5
Benzofluoranthenes /	4	252	<1	104	<1	101.7	1192.8	34.5	4.8	11.7	148.2
benzopyrenes											
C1 252 *		266	<1	N.D	<1	N.D	321.3	8.5	2.1	4.6	44.1
C2 252 *		280	<1	N.D	<1	N.D	167.7	3.2	<1	1.4	19.4
Sum 252 *			0	104	0.0	101.7	1681.7	46.2	6.9	17.7	211.7
Dibenzoanthracene / Indenopyrene /	2	276	-1	02	-1	02.0	EE2 4	111	2.4	4.2	57.0
Benzoperylene	3	270	<1	93	<1	92.0	555.4	14.1	2.4	4.2	57.0
C1 276 *		290	<1	N.D	<1	N.D	77.2	1.7	<1	<1	20.1
C2 276 *		304	<1	N.D	<1	N.D	38.0	<1	<1	<1	5.1
Sum 276 *			0	93	0.0	92.0	668.6	15.8	2.4	4.2	82.2
Sum of all fractions *			0	106	0.0	102.2	7958.9	217.1	33.5	101.0	1420.7
Sum of NPD fraction *			0	109	0.0	104.3	2868.5	46.7	5.2	34.0	540.0
NPD / 4-6 ring PAH ratio *			N.D	0.27	N.D	0.26	0.56	0.27	0.18	0.51	0.61

N.D = Not Determined as these compounds are not in the reference material spike.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

* Denotes not UKAS accredited

UKAS accredited?: Yes

		Sample ID :	CL1786205	CL1786206	CL1786207	CL1786208	CL1786209	CL1786210	CL1786211	CL1786212	CL1786213	CL1786214
		Station :	BH03 0.50	BH03 1.50	BH03 2.50	BH04 0.50	BH04 1.50	BH04 2.50	BH05 0.50	BH05 1.00	BH05 2.00	BH05 3.00
PAH Fraction	#PAH	Mass										
Naphthalene	1	128	<1	<1	<1	<1	<1	<1	<1	12.1	<1	<1
C1 Naphthalenes *	2	142	<1	<1	1.3	1.1	<1	<1	<1	21.4	<1	<1
C2 Naphthalenes *		156	<1	<1	8.4	1.3	1.1	<1	<1	11.4	<1	<1
C3 Naphthalenes *		170	1.2	<1	16.6	1.4	<1	<1	<1	7.5	<1	<1
C4 Naphthalenes *		184	1.1	<1	10.6	1.3	<1	2.7	<1	4.5	<1	<1
Sum Naphthalenes *			2	0	37	5	1	3	0	57	0	0
Phenanthrene / Anthracene	2	178	2.6	<1	64.7	2.0	<1	<1	<1	4.7	<1	<1
C1 178 *		192	2.8	<1	38.2	3.0	1.1	1.0	1.1	5.7	<1	<1
C2 178 *		206	2.2	<1	27.3	4.4	1.2	1.3	<1	5.6	<1	<1
C3 178 *		220	1.5	<1	13.3	3.2	<1	1.1	<1	3.5	<1	<1
Sum 178 *			9.0	0.0	143.5	12.5	2.3	3.4	1.1	19.6	0.0	0.0
Dibenzothiophene		184	<1	<1	4.3	<1	<1	<1	<1	<1	<1	<1
C1 Dibenzothiophenes *		198	<1	<1	8.8	<1	<1	<1	<1	1.1	<1	<1
C2 Dibenzothiophenes *		212	<1	<1	8.2	1.3	<1	1.1	<1	1.4	<1	<1
C3 Dibenzothiophenes *		226	<1	<1	3.8	1.6	<1	1.3	<1	<1	<1	<1
Sum Dibenzothiophenes *			0.0	0.0	25.1	2.9	0.0	2.5	0.0	2.5	0.0	0.0
Fluoranthene / pyrene	2	202	11.5	1.5	124.0	21.7	3.4	<1	5.9	13.7	2.3	2.9
C1 202 *		216	3.2	<1	30.8	6.0	1.1	<1	1.5	4.5	<1	<1
C2 202 *		230	2.0	<1	17.9	6.2	1.1	<1	1.2	4.5	<1	<1
C3 202 *		244	<1	<1	8.2	3.8	<1	<1	<1	2.9	<1	<1
Sum 202 *			16.7	1.5	180.9	37.7	5.6	0.0	8.5	25.7	2.3	2.9
Benzoanthracene / Chrysene	2	228	5.3	<1	47.4	14.0	<1	<1	3.1	7.7	<1	<1
C1 228 *		242	2.2	<1	18.0	5.9	<1	<1	1.4	4.4	<1	<1
C2 228 *		256	1.4	<1	9.9	3.9	<1	<1	<1	3.1	<1	<1
Sum 228 *			8.9	0.0	75.3	23.8	0.0	0.0	4.5	15.2	0.0	0.0
Benzofluoranthenes / benzopyrenes	4	252	6.5	<1	53.7	23.5	<1	<1	4.4	13.4	<1	<1
C1 252 *		266	1.9	<1	19.4	7.0	1.2	<1	1.6	5.5	<1	<1
C2 252 *		280	<1	<1	9.4	3.7	<1	<1	<1	2.9	<1	<1
Sum 252 *			8.3	0.0	82.5	34.3	1.2	0.0	6.0	21.7	0.0	0.0
Dibenzoanthracene / Indenopyrene / Benzoperylene	3	276	2.3	<1	22.1	9.0	<1	<1	<1	6.0	<1	<1
C1 276 *		290	<1	<1	5.0	2.2	<1	<1	<1	1.3	<1	<1
C2 276 *		304	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Sum 276 *			2.3	0.0	27.1	11.2	0.0	0.0	0.0	7.3	0.0	0.0
Sum of all fractions *			47.5	1.5	571.4	127.3	10.2	8.6	20.1	148.9	2.3	2.9
Sum of NPD fraction *			11.2	0.0	205.6	20.5	3.4	8.6	1.1	79.0	0.0	0.0
NPD / 4-6 ring PAH ratio *			0.31	0.00	0.56	0.19	0.50	N.D	0.06	1.13	0.00	0.00

N.D = Not Determined as these compounds are not in the reference material spike. As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery. * Denotes not UKAS accredited

Polyaromatic Hydrocarbon	Concentrations	(ng/g dry	weight basis)

UKAS accredited?: Yes

		Sample ID :	CL1786215	CL1786216	CL1786217	CL1786218	CL1786219	CL1786220	CL1786221	CL1786222	CL1786223	CL1786224
		Station :	BH06 0.50	BH06 1.00	BH06 2.00	BH06 3.00	BH07 1.00	BH07 2.00	BH08 1.00	BH08 2.00	BH09 0.50	BH09 2.00
PAH Fraction	#PAH	Mass										
Naphthalene	1	128	<1	<1	<1	<1	<1	<1	1.3	1.0	28.7	<1
C1 Naphthalenes *	2	142	<1	<1	<1	<1	<1	<1	1.1	1.3	10.4	1.1
C2 Naphthalenes *		156	<1	<1	<1	<1	1.3	<1	<1	1.7	7.5	<1
C3 Naphthalenes *		170	<1	<1	<1	<1	2.0	1.3	1.1	3.9	3.8	1.3
C4 Naphthalenes *		184	<1	<1	<1	1.0	1.6	1.7	1.0	13.6	3.3	2.2
Sum Naphthalenes *			0	0	0	1	5	3	5	22	54	5
Phenanthrene / Anthracene	2	178	<1	<1	<1	<1	1.8	2.2	9.8	10.3	20.8	8.5
C1 178 *		192	<1	<1	<1	<1	1.8	1.3	4.6	9.3	9.7	6.5
C2 178 *		206	<1	<1	<1	<1	1.6	1.3	3.5	17.6	8.7	8.7
C3 178 *		220	<1	<1	<1	<1	1.1	1.0	3.1	16.8	9.8	7.5
Sum 178 *			0.0	0.0	0.0	0.0	6.3	5.9	20.9	54.0	48.9	31.3
Dibenzothiophene		184	<1	<1	<1	<1	<1	<1	<1	1.2	3.5	<1
C1 Dibenzothiophenes *		198	<1	<1	<1	<1	<1	<1	<1	4.3	9.0	1.4
C2 Dibenzothiophenes *		212	<1	<1	<1	<1	<1	<1	1.8	14.5	3.7	3.1
C3 Dibenzothiophenes *		226	<1	<1	<1	<1	<1	<1	1.5	17.3	2.8	2.6
Sum Dibenzothiophenes *			0.0	0.0	0.0	0.0	0.0	0.0	3.3	37.3	19.0	7.0
Fluoranthene / pyrene	2	202	<1	<1	<1	<1	4.3	9.2	34.0	41.9	44.7	47.6
C1 202 *		216	<1	<1	<1	<1	1.4	2.0	9.6	11.5	14.1	11.7
C2 202 *		230	<1	<1	<1	<1	1.3	1.2	5.1	9.0	13.6	10.1
C3 202 *		244	<1	<1	<1	<1	<1	<1	2.8	5.2	9.5	6.5
Sum 202 *			0.0	0.0	0.0	0.0	7.0	12.4	51.6	67.5	81.9	75.9
Benzoanthracene / Chrysene	2	228	<1	<1	<1	<1	1.1	2.4	10.2	13.6	23.9	23.4
C1 228 *		242	<1	<1	<1	<1	1.0	1.2	4.2	6.4	15.1	10.0
C2 228 *		256	<1	<1	<1	<1	<1	<1	3.4	3.5	9.5	7.4
Sum 228 *			0.0	0.0	0.0	0.0	2.1	3.6	17.9	23.5	48.6	40.7
Benzofluoranthenes /	4	252	-1	-1	-1	-1	-1	-1	16.0	25.5	47.9	40.2
benzopyrenes	4	202	<1	<1	<1	<1	<1	<1	10.0	20.0	47.0	40.2
C1 252 *		266	<1	<1	<1	<1	1.3	<1	3.9	6.7	16.9	10.9
C2 252 *		280	<1	<1	<1	<1	<1	<1	1.5	3.0	9.1	5.7
Sum 252 *			0.0	0.0	0.0	0.0	1.3	0.0	21.4	35.2	73.8	56.7
Dibenzoanthracene / Indenonvrene /												
Benzonen/lene	3	276	<1	<1	<1	<1	<1	<1	4.0	7.4	20.9	10.7
Delizoperylerie												
C1 276 *		290	<1	<1	<1	<1	<1	<1	<1	1.3	4.4	1.7
C2 276 *		304	<1	<1	<1	<1	<1	<1	<1	<1	1.1	<1
Sum 276 *			0.0	0.0	0.0	0.0	0.0	0.0	4.0	8.6	26.4	12.4
Sum of all fractions *			0.0	0.0	0.0	1.0	21.6	24.9	123.5	247.7	352.1	228.6
Sum of NPD fraction *			0.0	0.0	0.0	1.0	11.2	8.9	28.7	112.9	121.5	42.8
NPD / 4-6 ring PAH ratio *			N.D	N.D	N.D	N.D	1.07	0.55	0.30	0.84	0.53	0.23

N.D = Not Determined as these compounds are not in the reference material spike. As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery. * Denotes not UKAS accredited

UKAS accredited?: Yes

EPA 16 PAHs

Compounds marked with a * are reported not UKAS.

	Sample ID :	CL1786226a	CL1786227a	CL1786226b	CL1786227b	CL1786225	CL1786201	CL1786202	CL1786203	CL1786204
			Reference		Reference					
	Station :		Material		Material					
		QC Blank	(% Recovery)	QC Blank	(% Recovery)	1941b	BH01 0.10	BH01 1.00	BH02 0.50	BH02 1.50
PAH	Mass									
Naphthalene	128	<1	105.8	<1	100.1	563.5	1.7	<1	2.7	77.6
Acenaphthylene	152	<1	108.4	<1	101.5	56.2	1.0	<1	<1	3.1
Acenaphthene	154	<1	106.7	<1	101.1	35.7	<1	<1	1.1	35.0
Fluorene	166	<1	106.8	<1	101.7	48.6	1.1	<1	1.5	38.0
Phenanthrene	178	<1	113.2	<1	114.8	359.6	15.8	1.4	6.6	160.7
Dibenzothiophene	184	<1	111.7	<1	105.2	45.0	1.4	<1	<1	12.0
Anthracene	178	<1	108.9	<1	103.0	139.1	4.6	<1	2.2	44.1
Fluoranthene	202	<1	109.1	<1	104.2	571.0	28.3	4.9	10.5	154.2
Pyrene	202	<1	106.6	<1	105.5	454.5	24.7	4.2	8.8	127.1
Benzo[a]anthracene	228	<1	104.5	<1	101.8	251.3	12.1	1.5	4.0	60.5
Chrysene	228	<1	110.7	<1	106.9	390.2	13.5	1.9	4.5	61.8
Benzo[b]fluoranthene	252	<1	96.6	<1	93.4	443.5	9.6	1.7	3.6	44.4
Benzo[k]fluoranthene	252	<1	108.5	<1	107.4	219.3	5.8	<1	2.0	23.8
Benzo[e]pyrene	252	<1	109.8	<1	106.0	318.9	8.5	1.5	2.7	33.2
Benzo[a]pyrene	252	<1	103.1	<1	100.0	211.1	10.7	1.6	3.4	46.8
Perylene *	252	<1	110.7	<1	106.0	263.7	7.6	3.1	2.6	16.1
Indeno[123,cd]pyrene	276	<1	92.5	<1	92.0	264.4	6.3	1.2	2.1	27.0
Dibenzo[a,h]anthracene	278	<1	86.2	<1	88.2	54.2	1.2	<1	<1	5.0
Benzo[ghi]perylene	276	<1	99.4	<1	95.9	234.8	6.7	1.2	2.1	24.9

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

UKAS accredited?: Yes

EPA 16 PAHs

Compounds marked with a * are reported not UKAS.

	Sample ID :	CL1786205	CL1786206	CL1786207	CL1786208	CL1786209	CL1786210	CL1786211	CL1786212	CL1786213
	Station :	BH03 0.50	BH03 1.50	BH03 2.50	BH04 0.50	BH04 1.50	BH04 2 50	BH05 0.50	BH05 1.00	BH05.2.00
РАН	Mass	21100 0100	2.100 1.00	21100 2100	211010100	2.1.0 1 1.00	2.101 2.00	21100 0100	21100 1100	21100 2100
Naphthalene	128	<1	<1	<1	<1	<1	<1	<1	12.1	<1
Acenaphthylene	152	<1	<1	<1	<1	<1	<1	<1	<1	<1
Acenaphthene	154	<1	<1	9.4	<1	<1	<1	<1	<1	<1
Fluorene	166	<1	<1	6.5	<1	<1	<1	<1	<1	<1
Phenanthrene	178	2.6	<1	46.4	2.0	<1	<1	<1	4.7	<1
Dibenzothiophene	184	<1	<1	4.3	<1	<1	<1	<1	<1	<1
Anthracene	178	<1	<1	18.3	<1	<1	<1	<1	<1	<1
Fluoranthene	202	6.4	1.5	69.3	11.4	1.8	<1	2.9	7.1	1.2
Pyrene	202	5.1	<1	54.7	10.2	1.6	<1	2.9	6.6	1.1
Benzo[a]anthracene	228	2.5	<1	23.9	5.8	<1	<1	1.4	3.3	<1
Chrysene	228	2.8	<1	23.5	8.2	<1	<1	1.7	4.5	<1
Benzo[b]fluoranthene	252	1.9	<1	16.2	7.7	<1	<1	1.6	3.6	<1
Benzo[k]fluoranthene	252	1.0	<1	7.5	3.6	<1	<1	<1	1.9	<1
Benzo[e]pyrene	252	1.5	<1	12.2	5.8	<1	<1	1.3	3.8	<1
Benzo[a]pyrene	252	2.0	<1	17.8	6.5	<1	<1	1.4	4.1	<1
Perylene *	252	<1	<1	5.0	2.5	1.9	<1	<1	2.7	<1
Indeno[123,cd]pyrene	276	1.1	<1	10.6	4.4	<1	<1	<1	3.0	<1
Dibenzo[a,h]anthracene	278	<1	<1	1.8	<1	<1	<1	<1	<1	<1
Benzo[ghi]perylene	276	1.1	<1	9.7	4.5	<1	<1	<1	3.0	<1

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

UKAS accredited?: Yes

EPA 16 PAHs

Compounds marked with a * are reported not UKAS.

	Sample ID :	CL1786214	CL1786215	CL1786216	CL1786217	CL1786218	CL1786219	CL1786220	CL1786221	CL1786222	CL1786223	CL1786224
	0 () (
	Station :	BH05 3.00	BH06 0.50	BH06 1.00	BH06 2.00	BH06 3.00	BH07 1.00	BH07 2.00	BH08 1.00	BH08 2.00	BH09 0.50	BH09 2.00
РАН	Mass											
Naphthalene	128	<1	<1	<1	<1	<1	<1	<1	1.3	1.0	28.7	<1
Acenaphthylene	152	<1	<1	<1	<1	<1	<1	<1	<1	<1	1.9	<1
Acenaphthene	154	<1	<1	<1	<1	<1	<1	<1	<1	1.5	2.0	<1
Fluorene	166	<1	<1	<1	<1	<1	<1	<1	1.8	2.2	8.6	<1
Phenanthrene	178	<1	<1	<1	<1	<1	1.8	1.2	6.1	6.9	12.7	6.1
Dibenzothiophene	184	<1	<1	<1	<1	<1	<1	<1	<1	1.2	3.5	<1
Anthracene	178	<1	<1	<1	<1	<1	<1	1.0	3.6	3.4	8.0	2.5
Fluoranthene	202	1.3	<1	<1	<1	<1	2.2	4.9	12.7	18.2	19.3	23.7
Pyrene	202	1.6	<1	<1	<1	<1	2.1	4.3	21.2	23.8	25.4	23.9
Benzo[a]anthracene	228	<1	<1	<1	<1	<1	<1	1.1	5.0	6.2	11.0	11.0
Chrysene	228	<1	<1	<1	<1	<1	1.1	1.3	5.2	7.4	13.0	12.4
Benzo[b]fluoranthene	252	<1	<1	<1	<1	<1	<1	<1	4.6	8.2	15.3	13.0
Benzo[k]fluoranthene	252	<1	<1	<1	<1	<1	<1	<1	2.9	4.3	7.0	6.2
Benzo[e]pyrene	252	<1	<1	<1	<1	<1	<1	<1	3.8	5.8	11.0	10.1
Benzo[a]pyrene	252	<1	<1	<1	<1	<1	<1	<1	4.7	7.2	14.4	10.9
Perylene *	252	<1	<1	<1	<1	<1	<1	<1	1.7	2.6	5.0	5.4
Indeno[123,cd]pyrene	276	<1	<1	<1	<1	<1	<1	<1	2.1	4.1	10.2	5.4
Dibenzo[a,h]anthracene	278	<1	<1	<1	<1	<1	<1	<1	<1	<1	1.4	<1
Benzo[ghi]perylene	276	<1	<1	<1	<1	<1	<1	<1	1.9	3.3	9.4	5.3

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Sample Analysis

SOCOTEC UK Ltd Environmental Chemistry Analytical and Deviating Sample Overview

Customer **Causeway Geotech Ltd** Site **Avoca River Sediment Sampling Report No** S181258

Consignment No S70508 Date Logged 05-Dec-2017

In-House Report Due 27-Dec-2017

Please note the results for any subcontracted analysis (identified with a '^') is likely to take up to an additional five working days.

		MethodID	ANC	CustServ	GROHSA	ICPMSS									ICPSOIL	OGSNSED		PAHSED	PCBMS3Q		TPHUSSI	WSLM59
ID Number	Description	Sampled	Carbonate %	Report C	GRO (AA) by HSA GC-FID	Copper (MS) Sediment	Arsenic (MS) Sediments	Cadmium (MS) Sediments	Chromium (MS) Sediments	Lead (MS) Sediments	Manganese (MS) Sediments	Mercury (MS) Sediments	Nickel (MS) Sediments	Zinc (MS) Sediments	Iron (Sediments)	Dibutyl Tin (Sediments)	Tributyl Tin (Sediments)	PAH by MS Dti	Organochlorine Pesticides (Marine Sediments)	PCB-7 Congeners (Marine Sediments)	TPH by GCFID (AR/Si)	Total Organic Carbon (Sediment)
CL/1786201	BH01 0.10	07/11/17																				
CL/1786202	BH01 1.00	07/11/17																				
CL/1786203	BH02 0.50	08/11/17																				
CL/1786204	BH02 1.50	08/11/17																				
CL/1786205	BH03 0.50	08/11/17																				
CL/1786206	BH03 1.50	08/11/17																				
CL/1786207	BH03 2.50	08/11/17																				
CL/1786208	BH04 0.50	08/11/17																				
CL/1786209	BH04 1.50	08/11/17																				
CL/1786210	BH04 2.50	08/11/17																				
		09/11/17																				
CL/1/86212		09/11/17																				
CL/1786213		09/11/17																				
CL/1786214		09/11/17																				
UL/1786215	BH00 0.50	09/11/17																				

Note: We will endeavour to prioritise samples to complete analysis within	Deviating Sample Key
holding time; however any delay could result in samples becoming	A The sample was received in an inappropriate container for this analysis
deviant whilst being processed in the laboratory.	B The sample was received without the correct preservation for this analysis
	C Headspace present in the sample container
If sampling dates are missing or matrices unclassified then results will	D The sampling date was not supplied so holding time may be compromised - applicable to all analysis
not be ISO 17025 accredited. Please contact us as soon as possible to	E Sample processing did not commence within the appropriate holding time
provide missing information in order to reinstate accreditation.	F Sample processing did not commence within the appropriate handling time
	Requested Analysis Key
	Analysis Required
	Analysis dependant upon trigger result - Note: due date may be affected if triggered
	No analysis scheduled
	Analysis Subcontracted - Note: due date may vary

Where individual results are flagged see report notes for status. Page 23 of 27he integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling. EFS/181258 Ver. 1 **Sample Analysis**

SOCOTEC UK Ltd Environmental Chemistry Analytical and Deviating Sample Overview

CustomerCauseway Geotech LtdSiteAvoca River Sediment SamplingReport NoS181258

Consignment No S70508 Date Logged 05-Dec-2017

In-House Report Due 27-Dec-2017

Please note the results for any subcontracted analysis (identified with a '^') is likely to take up to an additional five working days.

		MethodID	ANC	CustServ	GROHSA	CPMSS									ICPSOIL	DGSNSED		PAHSED	°CBMS3Q		rphussi	WSLM59
ID Number	Description	Sampled	Carbonate %	Report C	GRO (AA) by HSA GC-FID	Copper (MS) Sediment	Arsenic (MS) Sediments	Cadmium (MS) Sediments	Chromium (MS) Sediments	Lead (MS) Sediments	Manganese (MS) Sediments	Mercury (MS) Sediments	Nickel (MS) Sediments	Zinc (MS) Sediments	Iron (Sediments)	Dibutyl Tin (Sediments)	Tributyl Tin (Sediments)	PAH by MS Dti	Organochlorine Pesticides (Marine Sediments)	PCB-7 Congeners (Marine Sediments)	TPH by GCFID (AR/Si)	Total Organic Carbon (Sediment)
CL/1786216	BH06 1.00	09/11/17																				
CL/1786217	BH06 2.00	09/11/17																				
CL/1786218	BH06 3.00	09/11/17																				
CL/1786219	BH07 1.00	09/11/17																				
CL/1786220	BH07 2.00	09/11/17																				
CL/1786221	BH08 1.00	10/11/17																				
CL/1786222	BH08 2.00	10/11/17																				
CL/1786223	BH09 0.50	10/11/17																				
CL/1786224	BH09 2.00	10/11/17																				
CL/1786225	CRM	10/11/17																				
CL/1786226	QC Blank																					
CL/1786227	Reference Material (% Recovery	/)																				

Note: We will endeavour to prioritise samples to complete analysis within	Dev	riating Sample Key
holding time; however any delay could result in samples becoming	A	The sample was received in an inappropriate container for this analysis
deviant whilst being processed in the laboratory.	В	The sample was received without the correct preservation for this analysis
	С	Headspace present in the sample container
If sampling dates are missing or matrices unclassified then results will	D	The sampling date was not supplied so holding time may be compromised - applicable to all analysis
not be ISO 17025 accredited. Please contact us as soon as possible to	E	Sample processing did not commence within the appropriate holding time
provide missing information in order to reinstate accreditation.	F	Sample processing did not commence within the appropriate handling time
	Rec	uested Analysis Key
		Analysis Required
		Analysis dependant upon trigger result - Note: due date may be affected if triggered
		No analysis scheduled
	^	Analysis Subcontracted - Note: due date may vary

Where individual results are flagged see report notes for status.

Page 24 of 27 he integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling. EFS/181258 Ver. 1

Report Number : EFS/181258

Additional Report Notes

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
PAHSED	CL1786201 to CL1786225	Chrysene is known to coelute with Triphenylene and these peaks can not be resolved. It is believed Triphenylene is present in these samples therefore it is suggested that the Chrysene results should be taken as a Chrysene (inc. Triphenylene). This should be taken into consideration when utilising the data.

Method Descriptions

Matrix	MethodID	Analysis	Method Description
		Basis	
Soil	ANC	Oven Dried	Quantitative digestion with Hydrochloric Acid back titration with 1M
		@ < 35°C	Sodium Hydroxide to pH 7
Soil	GROHSA	As Received	Determination of Total Gasoline Range Organics Hydrocarbons
			(GRO) by Headspace GCFID
Soil	ICPMSS	Oven Dried	Determination of Metals in Marine Sediments and Soil samples by
		@ < 35°C	aqua regia digestion followed by ICPMS detection
Soil	ICPSOIL	Oven Dried	Determination of Metals in soil samples by aqua regia digestion
		@ < 35°C	followed by ICPOES detection
Soil	OGSNSED	As Received	Determination of Organo-tin compounds using sonic extraction in
			methanol, derivatiseation with Sodium Tetraethylborate and GCMS
			quantitation (SIM mode).
Soil	PAHSED	As Received	Determination of Polyaromatic Hydrocarbons in Sediments by
			Methanol/Dichloromethane ultrasonic extraction GC-MS
			quantification
Soil	PCBMS3Q	As Received	Determination of Polychlorinated Biphenyl (PCB) congeners by
			hexane/acetone extraction followed by GCECD detection
Soil	TPHUSSI	As Received	Determination of hexane/acetone extractable Hydrocarbons in soil
			with GCFID detection including quantitation of Aromatic and
			Aliphatic fractions.
Soil	WSLM59	Oven Dried	Determination of Organic Carbon in soil using sulphurous Acid
		@ < 35°C	digestion followed by high temperature combustion and IR
			detection

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l NiI: Where "NiI" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/I

Asbestos Analysis

CH Denotes ChrysotileTR Denotes TremoliteCR Denotes CrocidoliteAC Denotes ActinoliteAM Denotes AmositeAN Denotes AnthophyliteNAIIS No Asbestos Identified in SampleNADIS No Asbestos Detected In Sample

Symbol Reference

^ Sub-contracted analysis.

\$\$ Unable to analyse due to the nature of the sample

- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.
- This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

¥ Results for guidance only due to possible interference

& Blank corrected result

I.S Insufficient sample to complete requested analysis

I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

P Raised detection limit due to nature of the sample

* All accreditation has been removed by the laboratory for this result

‡ MCERTS accreditation has been removed for this result

§ accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Sample Descriptions

Client	:
Site :	

Causeway Geotech Ltd Avoca River Sediment Sampling S18_1258

Report Number :

Note: major constituent in upper case

Lab ID Number	Client ID	Description
CL/1786201	BH01 0.10	MARINE SEDIMENTS
CL/1786202	BH01 1.00	MARINE SEDIMENTS
CL/1786203	BH02 0.50	MARINE SEDIMENTS
CL/1786204	BH02 1 50	MARINE SEDIMENTS
CL/1786205	BH03.0.50	MARINE SEDIMENTS
CL/1786206	BH03 1 50	MARINE SEDIMENTS
CL/1786207	BH03 2 50	MARINE SEDIMENTS
CL/1786208	BH04.0.50	MARINE SEDIMENTS
CL/1786209	BH04 1 50	MARINE SEDIMENTS
CL/1786210	BH04 2 50	MARINE SEDIMENTS
CL/1786211	BH05.0.50	MARINE SEDIMENTS
CL/1786212	BH05 1 00	MARINE SEDIMENTS
CL/1786212	BH05 2 00	MARINE SEDIMENTS
CL/1786214	BH05 3 00	MARINE SEDIMENTS
CL/1786215	BH06 0 50	MARINE SEDIMENTS
CL/1786216	BH06 1.00	MARINE SEDIMENTS
CL/1786217	BH06 2.00	MARINE SEDMENTS
CL/1786218	BH06 3.00	MARINE SEDMENTS
CL/1786210	BH00 3.00	MARINE SEDIMENTS
CL/1786220	BH07 2.00	MARINE SEDIMENTS
CL/1786220	RH08 1 00	MARINE SEDIMENTS
CL/1706221	BH09 2 00	
CL/1706222	BH00 0 50	
CL/1786224	BH09 0.00	
CL/1706224		
CL/1786226		
CL/1706220	Reference Material (% Recovery)	
GL/1700227	Reference Material (% Recovery)	QUALITI CONTROL SAMPLE

Our Ref: EFS/181264 (Ver. 2) Your Ref: 17-0906

January 11, 2018

Environmental Chemistry SOCOTEC UK Limited Bretby Business Park Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

Neil Haggan Causeway Geotech Ltd 8 Drumahiskey Road Ballymoney United Kingdom BT53 7QL

For the attention of Neil Haggan

Dear Neil Haggan

Sample Analysis - Avoca River Sediment Sampling

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

Where appropriate the samples will be kept until 16/01/18 when they will be discarded. Please call 01283 554547 for an extension of this date. Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with SOCOTEC UK Limited (Multi-Sector Services) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for SOCOTEC UK Limited

THEOLODVINE

J Colbourne Project Co-ordinator 01283 554547

TEST REPORT

Report No. EFS/181264 (Ver. 2)

Causeway Geotech Ltd 8 Drumahiskey Road Ballymoney United Kingdom BT53 7QL

Site: Avoca River Sediment Sampling

The 27 samples described in this report were registered for analysis by SOCOTEC UK Limited on 05-Dec-2017. This report supersedes any versions previously issued by the laboratory. The analysis was completed by: 11-Jan-2018

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Pages 2 to 5) Table of PAH (MS-SIM) (80) Results (Pages 6 to 31) Table of PCB Congener Results (Pages 32 to 33) Table of GRO Results (Page 34) Table of TPH (Si) banding (std) (Pages 35 to 36) Table of WAC Analysis Results (Pages 37 to 60) Table of Asbestos Screening Results (Pages 61 to 62) Analytical and Deviating Sample Overview (Pages 63 to 66) Table of Additional Report Notes (Page 67) Table of Method Descriptions (Pages 68 to 69) Table of Report Notes (Page 70) Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of SOCOTEC UK Lim (Tim Barnes

Operations Director Energy & Waste Services

Date of Issue: 11-Jan-2018

Tests marked ${}^{\prime \! \Lambda \prime}$ have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected. SOCOTEC UK Limited accepts no responsibility for any sampling not carried out by our personnel.

Units: mg/kg pH Units % % mg/kg mg/kg mg/kg Method Codes: GROHSA ICPMSS ICPMSS ICPMSS ICPMSS ICPMSS ICPMSS ICPMSS ICPMSS PHSOII Sub002 TMSS TPHEIDUS TPHEIDUS																	
	Method Reporti	na Limits :	0.2	0.5	0.5	0.04	0.5	0.5	0.015	0.5	2	FIISOIL	300002	0.1	10	10	
	UKAS A	ccredited :	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
LAB ID Number CL/	Client Sample Description	Sample Date	GRO (AA) by HSA GC-FID	Copper (MS) Sediment	Arsenic (MS) Sediments	Cadmium (MS) Sediments	Chromium (MS) Sediments	Lead (MS) Sediments	Mercury (MS) Sediments	Nickel (MS) Sediments	Zinc (MS) Sediments	pH units (AR)	^Asbestos Screen & ID (Stage 1)	Tot.Moisture @ 105C	TPH Band (>C10-C40)	TPH by GCFID (AR)	
1786240	BH01 0.10	07-Nov-17	Req §	24.4	16.7	0.13	26.5	27.6	<0.015	17.3	91.6	4.7 §	NAIIS	7.9 §	27 §	27 §	
1786241	BH01 1.00	07-Nov-17	Req §	18.9	9.4	0.12	17.2	15.5	<0.015	15.1	81.4	4.6 §	NAIIS	13.2 §	30 §	31 §	
1786242	BH02 0.50	08-Nov-17	Req §	40.9	13.1	0.17	17	34.7	<0.015	14.5	108.1	7.3 §	NAIIS	6.0 §	54 §	54 §	
1786243	BH02 1.50	08-Nov-17	Req §	45.5	14.8	0.18	16.1	33.6	<0.015	13.2	93.6	8.5 §	NAIIS	8.7 §	17 §	17 §	
1786244	BH03 0.50	08-Nov-17	Req §	39.6	18.3	0.14	21.8	42.3	<0.015	18.6	104.9	7.2 §	NAIIS	8.1 §	25 §	25 §	
1786245	BH03 1.50	08-Nov-17	Req §	48.8	16.9	0.13	20.5	41.4	<0.015	17.4	109.3	6.9 §	NAIIS	12.9 §	15 §	15 §	
1786246	BH03 2.50	08-Nov-17	Req §	34.1	12.6	0.11	18.6	34	<0.015	15.6	90.3	6.9 §	NAIIS	10.3 §	15 §	16 §	
1786247	BH04 0.50	08-Nov-17	Req §	44.1	14.3	0.2	23.1	40.6	<0.015	18	97.3	6.9 §	NAIIS	6.3 §	10 §	10 §	
1786248	BH04 1.50	08-Nov-17	Req §	29.3	17.7	0.5	22.6	20.7	<0.015	17.5	129.9	7.4 §	NAIIS	9.4 §	13 §	13 §	
1786249	BH04 2.50	08-Nov-17	Req §	19.5	7.9	0.3	12.3	13.4	<0.015	11.8	87.9	8.6 §	NAIIS	14.1 §	33 §	33 §	
1786250	BH05 0.50	09-Nov-17	Req §	33.9	13.6	0.1	18.7	26.2	<0.015	14.7	107.5	7.5 §	NAIIS	4.4 §	<10 §	<10 §	
1786251	BH05 1.00	09-Nov-17	Req §	25.5	16.1	0.11	14.4	19.3	0.02	13.4	117.2	7.1 §	СН	5.4 §	24 §	24 §	
1786252	BH05 2.00	09-Nov-17	Req §	37.1	19.1	0.1	15.6	15.7	<0.015	13.2	120.9	7.4 §	NAIIS	4.7 §	11 §	11 §	
1786253	BH05 3.00	09-Nov-17	Req §	17.5	11	0.22	18.7	9.2	<0.015	16.9	135.9	7.4 §	NAIIS	8.4 §	<10 §	<10 §	
1786254	BH06 0.50	09-Nov-17	Req §	27.8	15.2	0.11	17.3	16.5	<0.015	14.3	118.1	7.4 §	NAIIS	6.0 §	<10 §	<10 §	
1786255	BH06 1.00	09-Nov-17	Req §	23.1	15.9	0.11	17	12.2	<0.015	14.3	113.1	7.4 §	NAIIS	12.8 §	<10 §	<10 §	
1786256	BH06 2.00	09-Nov-17	Req §	25.1	18.5	0.16	12.9	12.8	0.02	11.5	104.1	7.5 §	NAIIS	8.7 §	14 §	15 §	
1786257	BH06 3.00	09-Nov-17	Req §	90.5	19.8	0.6	19.3	18.2	<0.015	16.1	115.7	7.6 §	NAIIS	9.3 §	35 §	36 §	
1786258	BH07 1.00	09-Nov-17	Req §	26.1	16.5	0.11	17.8	16.2	<0.015	16.1	109	7.6 §	NAIIS	5.6 §	<10 §	<10 §	
1786259	BH07 2.00	09-Nov-17	Req §	23.6	20.6	0.07	16.3	22.1	<0.015	13.9	103.3	7.6 §	NAIIS	8.6 §	<10 §	<10 §	
SOCOTEC Client Name Causeway Geotech Ltd Sample Analysis Contact Neil Haggan Sample Analysis																	
	Bretby Business Park, Ashby Road											Date Prir					
	Burton-on-Trent, Staffordshire, DE15 0YZ			_	_		.					Report N	umber		EF	S/181264	
	Tel +44 (0) 1283 554400 Avoca River Sediment Sampling																
	Fax +44 (0) 1283 554422								_								

		Units :	mg/kg	% M/M	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	%	µg/kg	mg/kg		
	Method Reporti	od Codes : na Limits :	20	0.02	CALC_CR3					0 1	LOI(%MM) 0.2	0.08	PAHMSUS		
	UKAS A	ccredited :	Yes	Yes	No	No	No	No	No	No	No	No	Yes		
LAB ID Number CL/	Client Sample Description	Sample Date	TPH by GCFID (AR/Si)	Total Organic Carbon	Chromium (III)	Antimony (MS) Sediments	Molybdenum (MS) Sediments	Selenium (MS) Sediments	Barium. Sediment	Chromium vi:	L.O.I. % @ 450C	PCB-7 Congeners Analysis	PAH (17) by GCMS		
1786240	BH01 0.10	07-Nov-17	Req §	0.21	<26.5	0.6	1.7	<1	15.7	<0.1	0.7	Req	Req §		
1786241	BH01 1.00	07-Nov-17	Req §	0.33	<17.2	0.4	2.4	<1	15	<0.1	1.2	Req	Req §		
1786242	BH02 0.50	08-Nov-17	Req §	0.13	<17.0	0.6	0.6	<1	14.9	<0.1	0.5	Req	Req §		
1786243	BH02 1.50	08-Nov-17	Req §	0.16	<16.1	0.6	1	<1	13	<0.1	0.5	Req	Req §		
1786244	BH03 0.50	08-Nov-17	Req §	0.18	<21.8	0.7	0.9	<1	14.7	<0.1	0.7	Req	Req §		
1786245	BH03 1.50	08-Nov-17	Req §	0.30	<20.5	0.6	0.7	<1	17.2	<0.1	1.0	Req	Req §		
1786246	BH03 2.50	08-Nov-17	Req §	0.11	<18.6	0.6	0.7	<1	13.9	<0.1	0.6	Req	Req §		
1786247	BH04 0.50	08-Nov-17	Req §	0.16	22.9	0.6	0.6	<1	10.5	0.2	0.6	Req	Req §		
1786248	BH04 1.50	08-Nov-17	Req §	0.16	<22.6	0.4	0.7	<1	12.5	<0.1	0.5	Req	Req §		
1786249	BH04 2.50	08-Nov-17	Req §	0.09	<12.3	0.4	0.5	<1	11.4	<0.1	0.4	Req	Req §		
1786250	BH05 0.50	09-Nov-17	Req §	0.48	18.6	0.6	0.7	<1	14.5	0.1	0.6	Req	Req §		
1786251	BH05 1.00	09-Nov-17	Req §	0.15	<14.4	0.6	0.8	<1	13.5	<0.1	0.6	Req	Req §		
1786252	BH05 2.00	09-Nov-17	Req §	0.15	<15.6	0.8	0.8	<1	11.5	<0.1	0.6	Req	Req §		
1786253	BH05 3.00	09-Nov-17	Req §	0.12	<18.7	0.3	0.6	<1	14.2	<0.1	0.5	Req	Req §		
1786254	BH06 0.50	09-Nov-17	Req §	0.14	<17.3	0.5	0.8	<1	18	<0.1	0.7	Req	Req §		
1786255	BH06 1.00	09-Nov-17	Req §	0.13	<17.0	0.5	0.8	<1	14.6	<0.1	0.7	Req	Req §		
1786256	BH06 2.00	09-Nov-17	Req §	0.15	<12.9	0.5	0.8	<1	13.8	<0.1	0.7	Req	Req §		
1786257	BH06 3.00	09-Nov-17	Req §	0.11	<19.3	0.6	1.8	<1	28.3	<0.1	0.5	Req	Req §		
1786258	BH07 1.00	09-Nov-17	Req §	0.12	<17.8	0.4	0.8	<1	12.1	<0.1	0.5	Req	Req §		
1786259	BH07 2.00	09-Nov-17	Req §	0.11	16.2	0.4	0.7	<1	22.8	0.1	0.5	Req	Req §		
S			Client N Contact	ame	Causev Neil Hagg	vay Geot an	ech Ltd						Sam	ple Analysis	
Br	retby Business Park, Ashby Road											Date Pri	nted	22-Dec-2017	
В	urton-on-Trent, Staffordshire, DE15 0YZ			A					• • • • • •			Report N	lumber	EFS/181264	
т	Геl +44 (0) 1283 554400			AV	oca R	iver a	seaim	ient S	ampi	ing		Table Nu	umber	1	
F	-ax +44 (0) 1283 554422														

	Meth	Units : od Codes :	mg/kg GROHSA	mg/kg ICPMSS	mg/kg ICPMSS	mg/kg ICPMSS	mg/kg ICPMSS	mg/kg ICPMSS	mg/kg ICPMSS	mg/kg ICPMSS	mg/kg ICPMSS	pH Units PHSOIL	% Sub002	% TMSS	mg/kg TPHFIDUS	mg/kg TPHFIDUS	
	Method Reporti	ng Limits :	0.2	0.5	0.5	0.04	0.5	0.5	0.015	0.5	2		000002	0.1	10	10	
	UKAS A	ccredited :	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
LAB ID Number CL/	Client Sample Description	Sample Date	GRO (AA) by HSA GC-FID	Copper (MS) Sediment	Arsenic (MS) Sediments	Cadmium (MS) Sediments	Chromium (MS) Sediments	Lead (MS) Sediments	Mercury (MS) Sediments	Nickel (MS) Sediments	Zinc (MS) Sediments	pH units (AR)	^Asbestos Screen & ID (Stage 1)	Tot.Moisture @ 105C	TPH Band (>C10-C40)	TPH by GCFID (AR)	
1786260	BH08 1.00	10-Nov-17	Req §	69.6	23.3	0.74	25.4	63.5	<0.015	17.5	161.9	7.3 §	NAIIS	2.8 §	<10 §	<10 §	
1786261	BH08 2.00	10-Nov-17	Req §	44.3	12	0.2	16	35.9	<0.015	13.6	112.4	7.3 §	NAIIS	2.4 §	19 §	20 §	
1786262	BH09 0.50	10-Nov-17	Req §	38.7	15.3	0.24	21.3	37.4	<0.015	15.6	114	8.6 §	NAIIS	8.9 §	23 §	24 §	
1786263	BH09 2.00	10-Nov-17	Req §	51.9	17.9	0.34	18.4	60.6	<0.015	16.6	181.6	7.8 §	NAIIS	7.4 §	12 §	13 §	
1786264	CRM	10-Nov-17	Req §	56.68	18.05	1.507	60.34	78.95	0.723	32.27	316.1						
1786265	QC Blank		Req §	<0.5 §	<0.5 §	<0.04 §	<0.5 §	<0.5 §	<0.015 §	<0.5 §	<2 §				<10 §	<10 §	
1786266	Reference Material (% Recovery)		Req §	97 §	97 §	105 §	104 §	102 §	100 §	102 §	102 §	101 §			97 §	97 §	
			Client N Contact	ame	Causev Neil Hagg	vay Geot _{Jan}	ech Ltd						Sam	ple Ana	alysis		
	Bretby Business Park, Ashby Road											Date Prir	nted		22-	Dec-2017	
	Burton-on-Trent, Staffordshire, DE15 0YZ			A				·				Report N	lumber		EF	S/181264	
Tel +44 (0) 1283 554400 AVOCA RIVER Sediment Sampling Table Number 1																	
	Fax +44 (0) 1283 554422																

	Ui Mathad Car			% M/M	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	%	µg/kg	mg/kg				
	Method Bonorti	od Codes :	TPHUSSI	WSLM59	CALC_CR3		ICPMSS	ICPMSS	ICPSOIL	KONECR	LOI(%MM)	PCBECD	PAHMSUS				
	UKAS A	ccredited :	Yes	Yes	No	No	No	No	No	No	No	0.08 No	Yes				
LAB ID Number CL/	Client Sample Description	Sample Date	TPH by GCFID (AR/SI)	Total Organic Carbon	Chromium (III)	Antimony (MS) Sediments	Molybdenum (MS) Sediments	Selenium (MS) Sediments	Barium. Sediment	Chromium vi:	L.O.I. % @ 450C	PCB-7 Congeners Analysis	PAH (17) by GCMS				
1786260	BH08 1.00	10-Nov-17	Req §	0.12	<25.4	0.8	0.9	<1	16.6	<0.1	0.5	Req	Req §				
1786261	BH08 2.00	10-Nov-17	Req §	0.16	<16.0	0.5	0.7	<1	10.9	<0.1	0.6	Req	Req §				
1786262	BH09 0.50	10-Nov-17	Req §	0.22	<21.3	0.6	1.2	<1	16.6	<0.1	0.9	Req	Req §				
1786263	BH09 2.00	10-Nov-17	Req §	0.16	<18.4	0.8	0.8	<1	15.4	<0.1	0.9	Req	Req §				
1786264	CRM	10-Nov-17		3.1905				1.18	134			Req					
1786265	QC Blank		Req §	<0.02 §		<0.1	<0.5	<1	<0.5	<0.1		Req	Req §				
1786266	Reference Material (% Recovery)		Req §	101 §				96	98	101	99	Req	Req §				
	SOCOTEC		Client N Contact	ame	Causev Neil Hagg	vay Geot	ech Ltd			Sample Analysis Date Printed 22-Dec-2017							
	винон-он- Irent, Statrordshire, DE15 0Y2 Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422			Av	oca R	iver S	Sedim	ent S	ampli	ing		Report Number EFS/181264 Table Number 1					

Polycyclic Aromatic Hydrocarbons GC/MS (SIM)

Causeway Geotech L
3H01 0.10
CL1786240
171346
nitial Calibration
121517.MS17\
1.0

Causeway Geotech Ltd: Avoca River Sediment Sampling

s18_1264
05-Dec-17
15-Dec-17
15-Dec-17
Soil
Ultrasonic

UKAS accredited?: No

Target Compounds	CAS #	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	6.56	0.08	81
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	8.48	0.09	92
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	10.00	0.08	74
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.29	-

* Denotes compound is not UKAS accredited "M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	111
Acenaphthene-d10	113
Phenanthrene-d10	115
Chrysene-d12	124
Perylene-d12	118

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	93
Terphenyl-d14	78

Concentrations are reported on a wet weight basis.

The Total PAH result is the sum of non-rounded individual PAH results and therefore may differ to the sum of the rounded individual PAH results printed above. By convention, where any one or more result is a "less than", the total is expressed as a "less than" and includes the "less than" concentration within the total.
Customer and Site Details:	Causeway
Sample Details:	BH01 1.00
LIMS ID Number:	CL178624
QC Batch Number:	171346
Quantitation File:	Initial Cali
Directory:	121517.M
Dilution:	1.0

0 41 bration IS17\

Geotech Ltd: Avoca River Sediment Sampling Job Number: s18_1264 Date Booked in: 05-Dec-17 Date Extracted: 15-Dec-17 Date Analysed: 15-Dec-17 Matrix: Soil Ext Method: Ultrasonic

UKAS accredited?: No

Target Compounds	CAS #	R.T. (min)	Concentration mg/kg	% Fit
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

* Denotes compound is not UKAS accredited "M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	108
Acenaphthene-d10	109
Phenanthrene-d10	108
Chrysene-d12	108
Perylene-d12	99

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	101
Terphenyl-d14	82

Concentrations are reported on a wet weight basis.

Causeway Geotech Ltd: Avoca River Sediment Sampling		
BH02 0.50	Job Number:	s18_
CL1786242	Date Booked in:	05-E
171346	Date Extracted:	15-E
Initial Calibration	Date Analysed:	15-E
121517.MS17\	Matrix:	Soil
1.0	Ext Method:	Ultra
	Causeway Geotech Lt BH02 0.50 CL1786242 171346 Initial Calibration 121517.MS17\ 1.0	Causeway Geotech Ltd: Avoca River Sediment SBH02 0.50Job Number:CL1786242Date Booked in:171346Date Extracted:Initial CalibrationDate Analysed:121517.MS17\Matrix:1.0Ext Method:

UKAS accredited?: No

Target Compounds	CAS #	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	_
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

* Denotes compound is not UKAS accredited "M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	110
Acenaphthene-d10	111
Phenanthrene-d10	111
Chrysene-d12	114
Perylene-d12	109

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	97
Terphenyl-d14	80

s18_1264

05-Dec-17

15-Dec-17

15-Dec-17

Ultrasonic

Soil

Concentrations are reported on a wet weight basis.

Customer and Site Details:	Causeway Geotech Lt	d: Avoca Ri
Sample Details:	BH02 1.50	Job N
LIMS ID Number:	CL1786243	Date E
QC Batch Number:	171346	Date E
Quantitation File:	Initial Calibration	Date A
Directory:	121517.MS17\	Matrix
Dilution:	1.0	Ext M

iver Sediment Sampling

Number:	s18_1264
e Booked in:	05-Dec-17
e Extracted:	15-Dec-17
e Analysed:	15-Dec-17
rix:	Soil
Method:	Ultrasonic

UKAS accredited?: No

Target Compounds	CAS #	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

* Denotes compound is not UKAS accredited "M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	110
Acenaphthene-d10	111
Phenanthrene-d10	113
Chrysene-d12	118

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	96
Terphenyl-d14	79

Concentrations are reported on a wet weight basis.

The Total PAH result is the sum of non-rounded individual PAH results and therefore may differ to the sum of the rounded individual PAH results printed above. By convention, where any one or more result is a "less than", the total is expressed as a "less than" and includes the "less than" concentration within the total.

112

Perylene-d12

Customer and Site Details:	Cause
Sample Details:	BH03 (
LIMS ID Number:	CL178
QC Batch Number:	171346
Quantitation File:	Initial C
Directory:	121517
Dilution:	1.0

0.50 6244 6 Calibration 7.MS17\

way Geotech Ltd: Avoca River Sediment Sampling Job Number: s18_1264 Date Booked in: 05-Dec-17 Date Extracted: 15-Dec-17 Date Analysed: 15-Dec-17 Matrix: Soil Ext Method: Ultrasonic

UKAS accredited?: No

Target Compounds	CAS #	R.T.	Concentration	% Fit
	04.00.0	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

* Denotes compound is not UKAS accredited "M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	108
Acenaphthene-d10	110
Phenanthrene-d10	110
Chrysene-d12	111
Perylene-d12	104

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	100
Terphenyl-d14	82

Concentrations are reported on a wet weight basis.

Customer and Site Details:	Caus
Sample Details:	BH03
LIMS ID Number:	CL17
QC Batch Number:	1713
Quantitation File:	Initia
Directory:	1215
Dilution:	1.0

3 1.50 786245 46 Calibration 17.MS17

seway Geotech Ltd: Avoca River Sediment Sampling Job Number: s18_1264 Date Booked in: 05-Dec-17 Date Extracted: 15-Dec-17 Date Analysed: 15-Dec-17 Matrix: Soil Ext Method: Ultrasonic

UKAS accredited?: No

Target Compounds	CAS #	R.T. (min)	Concentration mg/kg	% Fit
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	_
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

* Denotes compound is not UKAS accredited "M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	106
Acenaphthene-d10	106
Phenanthrene-d10	107
Chrysene-d12	103
Perylene-d12	95

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	95
Terphenyl-d14	77

Concentrations are reported on a wet weight basis.

Causeway Geotech Lt	d: Avoca River Sediment S	Sampling
BH03 2.50	Job Number:	s18_
CL1786246	Date Booked in:	05-E
171346	Date Extracted:	15-E
Initial Calibration	Date Analysed:	15-E
121517.MS17\	Matrix:	Soil
1.0	Ext Method:	Ultra
	Causeway Geotech Lt BH03 2.50 CL1786246 171346 Initial Calibration 121517.MS17\ 1.0	Causeway Geotech Ltd: Avoca River Sediment SBH03 2.50Job Number:CL1786246Date Booked in:171346Date Extracted:Initial CalibrationDate Analysed:121517.MS17\Matrix:1.0Ext Method:

UKAS accredited?: No

Target Compounds	CAS #	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

* Denotes compound is not UKAS accredited "M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	106
Acenaphthene-d10	106
Phenanthrene-d10	108
Chrysene-d12	112
Perylene-d12	106

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	93
Terphenyl-d14	76

s18_1264

05-Dec-17

15-Dec-17

15-Dec-17

Ultrasonic

Soil

Concentrations are reported on a wet weight basis.

Customer and Site Details:	Causeway Geote
Sample Details:	BH04 0.50
LIMS ID Number:	CL1786247
QC Batch Number:	171346
Quantitation File:	Initial Calibration
Directory:	121517.MS17\
Dilution:	1.0

auseway Geotech Ltd: Avoca River Sediment Sampling H04 0.50 Job Number: S18

Job Number:S18_1264Date Booked in:05-Dec-17Date Extracted:15-Dec-17Date Analysed:15-Dec-17Matrix:SoilExt Method:Ultrasonic

UKAS accredited?: No

Target Compounds	CAS #	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

* Denotes compound is not UKAS accredited "M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	105
Acenaphthene-d10	106
Phenanthrene-d10	104
Chrysene-d12	99
Perylene-d12	92

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	91
Terphenyl-d14	73

Concentrations are reported on a wet weight basis.

С
В
С
1
Ir
1:
1

3H04 1.50 L1786248 71346 nitial Calibration 21517.MS17 .0

auseway Geotech Ltd: Avoca River Sediment Sampling Job Number: s18_1264 Date Booked in: 05-Dec-17 Date Extracted: 15-Dec-17 Date Analysed: 15-Dec-17 Matrix: Soil Ext Method: Ultrasonic

UKAS accredited?: No

Target Compounds	CAS #	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	_
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

* Denotes compound is not UKAS accredited "M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	106
Acenaphthene-d10	107
Phenanthrene-d10	106
Chrysene-d12	105
Perylene-d12	96

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	101
Terphenyl-d14	82

Concentrations are reported on a wet weight basis.

Customer and Site Details:	Causeway Geotech Ltd: Avoca River Sediment		
Sample Details:	BH04 2.50 Job Number:		
LIMS ID Number:	CL1786249	Date Booked in:	
QC Batch Number:	171346	Date Extracted:	
Quantitation File:	Initial Calibration	Date Analysed:	
Directory:	121517.MS17\	Matrix:	
Dilution:	1.0	Ext Method:	

UKAS accredited?: No

Target Compounds	CAS #	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

* Denotes compound is not UKAS accredited "M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	108
Acenaphthene-d10	109
Phenanthrene-d10	109
Chrysene-d12	113
Perylene-d12	109

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	90
Terphenyl-d14	74

Sampling

S18_1264

05-Dec-17

15-Dec-17

15-Dec-17

Ultrasonic

Soil

Concentrations are reported on a wet weight basis.

Customer and Site Details:	Cau
Sample Details:	BH0
LIMS ID Number:	CL1
QC Batch Number:	1713
Quantitation File:	Initia
Directory:	1215
Dilution:	1.0

5 0.50 786250 346 al Calibration 517.MS17

seway Geotech Ltd: Avoca River Sediment Sampling Job Number: s18_1264 Date Booked in: 05-Dec-17 Date Extracted: 15-Dec-17 Date Analysed: 15-Dec-17 Matrix: Soil Ext Method: Ultrasonic

UKAS accredited?: No

Target Compounds	CAS #	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	_
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

* Denotes compound is not UKAS accredited "M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	109
Acenaphthene-d10	110
Phenanthrene-d10	112
Chrysene-d12	118
Perylene-d12	110

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	94
Terphenyl-d14	78

Concentrations are reported on a wet weight basis.

Customer and Site Details:	Causeway Geotech Ltd:
Sample Details:	BH05 1.00
LIMS ID Number:	CL1786251
QC Batch Number:	171346
Quantitation File:	Initial Calibration
Directory:	121517.MS17\
Dilution:	1.0

Causeway Geotech Ltd: Avoca River Sediment Sampling

S18_1264
05-Dec-17
15-Dec-17
15-Dec-17
Soil
Ultrasonic

UKAS accredited?: No

Target Compounds	CAS #	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

* Denotes compound is not UKAS accredited "M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	105
Acenaphthene-d10	105
Phenanthrene-d10	105
Chrysene-d12	108
Perylene-d12	103

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	99
Terphenyl-d14	80

Concentrations are reported on a wet weight basis.

Customer and Site Details:	Causeway Geotech Ltd: Avoca River Sediment Sampling		
Sample Details:	BH05 2.00	Job Number:	s18_1264
LIMS ID Number:	CL1786252	Date Booked in:	05-Dec-17
QC Batch Number:	171347	Date Extracted:	15-Dec-17
Quantitation File:	Initial Calibration	Date Analysed:	15-Dec-17
Directory:	121517.MS17\	Matrix:	Soil
Dilution:	1.0	Ext Method:	Ultrasonic

UKAS accredited?: No

Target Compounds	CAS #	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

* Denotes compound is not UKAS accredited "M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	109
Acenaphthene-d10	110
Phenanthrene-d10	110
Chrysene-d12	112
Perylene-d12	101

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	93
Terphenyl-d14	77

Concentrations are reported on a wet weight basis.

Customer and Site Details:	Causeway Geotech Ltd: Avoca River Sediment Sampling		
Sample Details:	BH05 3.00	Job Number:	S18_1264
LIMS ID Number:	CL1786253	Date Booked in:	05-Dec-17
QC Batch Number:	171347	Date Extracted:	15-Dec-17
Quantitation File:	Initial Calibration	Date Analysed:	16-Dec-17
Directory:	121517.MS17\	Matrix:	Soil
Dilution:	1.0	Ext Method:	Ultrasonic

UKAS accredited?: No

Target Compounds	CAS #	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

* Denotes compound is not UKAS accredited "M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	109
Acenaphthene-d10	110
Phenanthrene-d10	110
Chrysene-d12	110
Perylene-d12	100

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	90
Terphenyl-d14	74

Concentrations are reported on a wet weight basis.

Causeway Geotech Ltd: Avoca Riv		
BH06 0.50	Job Nu	
CL1786254	Date Bo	
171347	Date Ex	
Initial Calibration	Date An	
121517.MS17\	Matrix:	
1.0	Ext Met	
	Causeway Geotech Lt BH06 0.50 CL1786254 171347 Initial Calibration 121517.MS17\ 1.0	

Job Number:s18_1264Job Number:s18_1264Date Booked in:05-Dec-17Date Extracted:15-Dec-17Date Analysed:16-Dec-17Matrix:SoilExt Method:Ultrasonic

UKAS accredited?: No

Target Compounds	CAS #	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

* Denotes compound is not UKAS accredited "M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	109
Acenaphthene-d10	110
Phenanthrene-d10	110
Chrysene-d12	108
Perylene-d12	98

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	92
Terphenyl-d14	76

Concentrations are reported on a wet weight basis.

Customer and Site Details:	Causeway Geotech Ltd: Avoca River Sediment Sampling		
Sample Details:	BH06 1.00	Job Number:	S18
LIMS ID Number:	CL1786255	Date Booked in:	05-E
QC Batch Number:	171347	Date Extracted:	15-E
Quantitation File:	Initial Calibration	Date Analysed:	16-E
Directory:	121517.MS17\	Matrix:	Soil
Dilution:	1.0	Ext Method:	Ultra

UKAS accredited?: No

Target Compounds	CAS #	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

* Denotes compound is not UKAS accredited "M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	109
Acenaphthene-d10	110
Phenanthrene-d10	110
Chrysene-d12	108
Perylene-d12	97

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	94
Terphenyl-d14	77

S18_1264 05-Dec-17

15-Dec-17 16-Dec-17

Ultrasonic

Soil

Concentrations are reported on a wet weight basis.

Customer and Site Details:	Causeway Geotech Ltd: Avoca River Sediment Sampling		
Sample Details:	BH06 2.00	Job Number:	s18_1264
LIMS ID Number:	CL1786256	Date Booked in:	05-Dec-17
QC Batch Number:	171347	Date Extracted:	15-Dec-17
Quantitation File:	Initial Calibration	Date Analysed:	16-Dec-17
Directory:	121517.MS17\	Matrix:	Soil
Dilution:	1.0	Ext Method:	Ultrasonic

UKAS accredited?: No

Target Compounds	CAS #	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

* Denotes compound is not UKAS accredited "M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	107
Acenaphthene-d10	108
Phenanthrene-d10	108
Chrysene-d12	107
Perylene-d12	98

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	103
Terphenyl-d14	84

Concentrations are reported on a wet weight basis.

Customer and Site Details:	Causeway Geotech Ltd: Avoca River Sediment Sampling		
Sample Details:	BH06 3.00	Job Number:	S18_1264
LIMS ID Number:	CL1786257	Date Booked in:	05-Dec-17
QC Batch Number:	171347	Date Extracted:	15-Dec-17
Quantitation File:	Initial Calibration	Date Analysed:	16-Dec-17
Directory:	121517.MS17\	Matrix:	Soil
Dilution:	1.0	Ext Method:	Ultrasonic

UKAS accredited?: No

Target Compounds	CAS #	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

* Denotes compound is not UKAS accredited "M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	108
Acenaphthene-d10	107
Phenanthrene-d10	107
Chrysene-d12	103
Perylene-d12	95

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	93
Terphenyl-d14	75

Concentrations are reported on a wet weight basis.

Customer and Site Details:	Causeway Geotech Ltd: Avoca River Sediment Sampling		
Sample Details:	BH07 1.00	Job Number:	s18_1264
LIMS ID Number:	CL1786258	Date Booked in:	05-Dec-17
QC Batch Number:	171347	Date Extracted:	15-Dec-17
Quantitation File:	Initial Calibration	Date Analysed:	16-Dec-17
Directory:	121517.MS17\	Matrix:	Soil
Dilution:	1.0	Ext Method:	Ultrasonic

UKAS accredited?: No

Target Compounds	CAS #	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

* Denotes compound is not UKAS accredited "M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	109
Acenaphthene-d10	110
Phenanthrene-d10	111
Chrysene-d12	115
Perylene-d12	107

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	95
Terphenyl-d14	78

Concentrations are reported on a wet weight basis.

Customer and Site Details:	Causeway Geotech Ltd: Avoca River Sediment Sampling		
Sample Details:	BH07 2.00	Job Number:	S18_1264
LIMS ID Number:	CL1786259	Date Booked in:	05-Dec-17
QC Batch Number:	171347	Date Extracted:	15-Dec-17
Quantitation File:	Initial Calibration	Date Analysed:	16-Dec-17
Directory:	121517.MS17\	Matrix:	Soil
Dilution:	1.0	Ext Method:	Ultrasonic

UKAS accredited?: No

Target Compounds	CAS #	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

* Denotes compound is not UKAS accredited "M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	108
Acenaphthene-d10	108
Phenanthrene-d10	107
Chrysene-d12	107
Perylene-d12	95

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	92
Terphenyl-d14	75

Concentrations are reported on a wet weight basis.

Causeway Geotech Ltd: Avoca River Sediment Sampling		
BH08 1.00	Job Number:	s18_
CL1786260	Date Booked in:	05-E
171347	Date Extracted:	15-E
Initial Calibration	Date Analysed:	16-E
121517.MS17\	Matrix:	Soil
1.0	Ext Method:	Ultra
	Causeway Geotech Lt BH08 1.00 CL1786260 171347 Initial Calibration 121517.MS17\ 1.0	Causeway Geotech Ltd: Avoca River Sediment SBH08 1.00Job Number:CL1786260Date Booked in:171347Date Extracted:Initial CalibrationDate Analysed:121517.MS17\Matrix:1.0Ext Method:

UKAS accredited?: No

Target Compounds	CAS #	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

* Denotes compound is not UKAS accredited "M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	107
Acenaphthene-d10	107
Phenanthrene-d10	109
Chrysene-d12	115
Perylene-d12	106

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	93
Terphenyl-d14	78

s18_1264

05-Dec-17

15-Dec-17

16-Dec-17

Ultrasonic

Soil

Concentrations are reported on a wet weight basis.

Customer and Site Details:	Causeway Geotech Ltd: Avoca River Sediment Sampling			
Sample Details:	BH08 2.00	Job Number:	S18_1264	
LIMS ID Number:	CL1786261	Date Booked in:	05-Dec-17	
QC Batch Number:	171347	Date Extracted:	15-Dec-17	
Quantitation File:	Initial Calibration	Date Analysed:	16-Dec-17	
Directory:	121517.MS17\	Matrix:	Soil	
Dilution:	1.0	Ext Method:	Ultrasonic	

UKAS accredited?: No

Target Compounds	CAS #	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

* Denotes compound is not UKAS accredited "M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	103
Acenaphthene-d10	104
Phenanthrene-d10	102
Chrysene-d12	95
Perylene-d12	86

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	94
Terphenyl-d14	75

Concentrations are reported on a wet weight basis.

Causeway Geotech Ltd: Avoca River Sediment Sampling		
BH09 0.50	Job Number:	s18_
CL1786262	Date Booked in:	05-E
171347	Date Extracted:	15-E
Initial Calibration	Date Analysed:	16-E
121517.MS17\	Matrix:	Soil
1.0	Ext Method:	Ultra
	Causeway Geotech Lt BH09 0.50 CL1786262 171347 Initial Calibration 121517.MS17\ 1.0	Causeway Geotech Ltd: Avoca River Sediment SBH09 0.50Job Number:CL1786262Date Booked in:171347Date Extracted:Initial CalibrationDate Analysed:121517.MS17\Matrix:1.0Ext Method:

UKAS accredited?: No

Target Compounds	CAS #	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	_
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

* Denotes compound is not UKAS accredited "M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	107
Acenaphthene-d10	107
Phenanthrene-d10	107
Chrysene-d12	103
Perylene-d12	93

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	92
Terphenyl-d14	74

s18_1264

05-Dec-17

15-Dec-17

16-Dec-17

Ultrasonic

Soil

Concentrations are reported on a wet weight basis.

Customer and Site Details:	Causeway Geotech Ltd: Avoca River Sediment Sampling			
Sample Details:	BH09 2.00	Job Number:	S18_1264	
LIMS ID Number:	CL1786263	Date Booked in:	05-Dec-17	
QC Batch Number:	171347	Date Extracted:	15-Dec-17	
Quantitation File:	Initial Calibration	Date Analysed:	16-Dec-17	
Directory:	121517.MS17\	Matrix:	Soil	
Dilution:	1.0	Ext Method:	Ultrasonic	

UKAS accredited?: No

Target Compounds	CAS #	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

* Denotes compound is not UKAS accredited "M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	104
Acenaphthene-d10	104
Phenanthrene-d10	104
Chrysene-d12	106
Perylene-d12	97

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	104
Terphenyl-d14	85

Concentrations are reported on a wet weight basis.

Customer and Site Details:	Causeway Geotech Ltd: Avoca River Sediment Sampling			
Sample Details:	QC Blank	Job Number:	s18_1264	
LIMS ID Number:	CL1786265	Date Booked in:	05-Dec-17	
QC Batch Number:	171347	Date Extracted:	15-Dec-17	
Quantitation File:	Initial Calibration	Date Analysed:	15-Dec-17	
Directory:	121517.MS17\	Matrix:	Soil	
Dilution:	1.0	Ext Method:	Ultrasonic	

UKAS accredited?: No

Target Compounds	CAS #	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

* Denotes compound is not UKAS accredited "M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	106
Acenaphthene-d10	108
Phenanthrene-d10	108
Chrysene-d12	111
Perylene-d12	104

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	106
Terphenyl-d14	86

Concentrations are reported on a wet weight basis.

Customer and Site Details:	Causeway Geotech Ltd: Avoca River Sediment Sampling				
Sample Details:	Reference Material (% Recovery)	Job Number:	S18_1264		
LIMS ID Number:	CL1786266	Date Booked in:	05-Dec-17		
QC Batch Number:	171347	Date Extracted:	15-Dec-17		
Quantitation File:	Initial Calibration	Date Analysed:	15-Dec-17		
Directory:	121517.MS17\	Matrix:	Soil		
Dilution:	1.0	Ext Method:	Ultrasonic		

UKAS accredited?: No

Target Compounds	CAS #	R.T.	Recovery	% Fit
		(min)	%	
Naphthalene	91-20-3	2.99	99	99
Acenaphthylene	208-96-8	4.03	99	99
Acenaphthene	83-32-9	4.14	101	96
Fluorene	86-73-7	4.50	99	95
Phenanthrene	85-01-8	5.28	98	99
Anthracene	120-12-7	5.33	98	99
Fluoranthene	206-44-0	6.56	99	91
Pyrene	129-00-0	6.83	99	90
Benzo[a]anthracene	56-55-3	8.48	95	99
Chrysene	218-01-9	8.53	101	99
Benzo[b]fluoranthene	205-99-2	9.99	91	96
Benzo[k]fluoranthene	207-08-9	10.02	96	97
Benzo[a]pyrene	50-32-8	10.41	98	96
Indeno[1,2,3-cd]pyrene	193-39-5	11.78	97	89
Dibenzo[a,h]anthracene	53-70-3	11.81	104	96
Benzo[g,h,i]perylene	191-24-2	12.06	97	94
Coronene	191-07-1	13.90	80	77
Total (USEPA16) PAHs	-	-	103	-

* Denotes compound is not UKAS accredited "M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	-
Acenaphthene-d10	-
Phenanthrene-d10	-
Chrysene-d12	-
Perylene-d12	-

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	-
Terphenyl-d14	-

Concentrations are reported on a wet weight basis.

Polychlorinated Biphenyls (congeners)

Customer and Site Details: Job Number: QC Batch Number: Directory: Method:	Causeway Geotech Ltd: Avoca River S18_1264 170019 181217PCB.TQ1 Ultrasonic		Matrix: Date Booked in: Date Extracted: Date Analysed:		Soil 05-Dec-17 16-Dec-17 18-Dec-17			
		Compounds	marked * are	not UKAS or N	ICerts accred	ited		
				Con	centration,	(µg/kg)		
Sample ID	Customer ID	PCB28*	PCB52*	PCB101*	PCB118*	PCB153*	PCB138*	PCB180*
CL1786240	BH01 0.10	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1786241	BH01 1.00	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1786242	BH02 0.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1786243	BH02 1.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1786244	BH03 0.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1786245	BH03 1.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1786246	BH03 2.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1786247	BH04 0.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1786248	BH04 1.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1786249	BH04 2.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1786250	BH05 0.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1786251	BH05 1.00	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1786252	BH05 2.00	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1786253	BH05 3.00	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1786254	BH06 0.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1786255	BH06 1.00	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1786256	BH06 2.00	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1786257	BH06 3.00	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1786258	BH07 1.00	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1786259	BH07 2.00	< 0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

Polychlorinated Biphenyls (congeners)

Customer and Site Details: Job Number: QC Batch Number: Directory: Method:	tomer and Site Details:Causeway Geotech Ltd: Avoca River Sediment SamplingNumber:S18_1264Batch Number:170020ctory:181217PCB.TQ1Ind:Ultrasonic			Matrix: Date Booked in: Date Extracted: Date Analysed:		Soil 05-Dec-17 16-Dec-17 18-Dec-17		
		Compounds	marked * are i	not UKAS or N	ICerts accredi	ted		
				Con	centration,	(µg/kg)		
Sample ID	Customer ID	PCB28*	PCB52*	PCB101*	PCB118*	PCB153*	PCB138*	PCB180*
CL1786260	BH08 1.00	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1786261	BH08 2.00	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1786262	BH09 0.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1786263	BH09 2.00	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1786264	CRM	2.87	4.60	4.87	3.34	4.10	4.22	2.48
CL1786265	QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1786266	Reference Material (% Recovery)	73	117	104	106	105	109	106
		1						

Gasoline Range Organics (BTEX and Aliphatic Carbon Ranges)

Customer and Site Details:	Causeway Geotech Ltd : Avoca River Sediment Sampling	Matrix:	Soil
Job Number:	S18_1264	Date Booked in:	05-Dec-17
Directory:	D:\TES\DATA\2017\1215HSA_GC9\121517 2017-12-15 16-39-29\133B3301.D	Date extracted:	15-Dec-17
Method:	Headspace GCFID	Date Analysed:	16-Dec-17, 02:05:56

	* Sample data with an asterisk are not UKAS accredited.											
			Concentration, (mg/kg) - as wet weight							Aliphatics		
	Sample ID	Client ID	Benzene	Toluene	Ethyl benzene	m/p-Xylene	o-Xylene	C5 - C6	>C6 - C7	>C7 - C8	>C8 - C10	Total GRO
*	CL1786240	BH01 0.10	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
*	CL1786241	BH01 1.00	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
*	CL1786242	BH02 0.50	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
*	CL1786243	BH02 1.50	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
*	CL1786244	BH03 0.50	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
*	CL1786245	BH03 1.50	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
*	CL1786246	BH03 2.50	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
*	CL1786247	BH04 0.50	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
*	CL1786248	BH04 1.50	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
*	CL1786249	BH04 2.50	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
*	CL1786250	BH05 0.50	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
*	CL1786251	BH05 1.00	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
*	CL1786252	BH05 2.00	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
*	CL1786253	BH05 3.00	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
*	CL1786254	BH06 0.50	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
*	CL1786255	BH06 1.00	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
*	CL1786256	BH06 2.00	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
*	CL1786257	BH06 3.00	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
*	CL1786258	BH07 1.00	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
*	CL1786259	BH07 2.00	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
*	CL1786260	BH08 1.00	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
*	CL1786261	BH08 2.00	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
*	CL1786262	BH09 0.50	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
	CL1786263	BH09 2.00	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
	CL1786265	QC Blank	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
	CL1786266	Reference Material (% Recovery)	92	92	96	97	92	100	109	112	107	106

Note: Benzene elutes between C6 and C7, toluene elutes between C7 and C8, ethyl benzene and the xylenes elute between C8 and C9.

Each BTEX compound is deducted from the appropriate band to give the aliphatic fractions, however aromatic compounds may still be contributing to these fractions

ALIPHATIC / AROMATIC FRACTION BY GC/FID

Customer and Site Details:	Causeway Geotech Ltd : Avoca River Sediment Sampling		
Job Number:	S18_1264	Separation:	Silica gel
QC Batch Number:	171347	Eluents:	Hexane, DCM
Directory:	C:\CHEM32\1\DATA\121917TPH_GC15\12191	7 2017-12-19 09	-54-58\OnlineEdited046B.D
Method:	Ultra Sonic		

Matrix:	Soil
Date Booked in:	05-Dec-17
Date Extracted:	15-Dec-17
Date Analysed:	19-Dec-17, 19:14:33

		Concentration, (mg/kg) - as wet weight											
* This sample data is not UK	AS accredited.	>C8 - C10		>C10 - C12		>C12	- C16	>C16 - 0	21	>C21 - C35		>C8 - C40	
Sample ID	Client ID	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics
* CL1786252	BH05 2.00	<4.08	<4	<4.08	<4	<4.08	<4	<4.08	<4	<8.94	<8.76	<20.4	<20
* CL1786253	BH05 3.00	<4.04	<4	<4.04	<4	<4.04	5.24	<4.04	<4	<8.85	<8.76	<20.2	<20
* CL1786254	BH06 0.50	<4.04	<4	<4.04	<4	<4.04	<4	<4.04	<4	<8.85	<8.76	<20.2	<20
* CL1786255	BH06 1.00	<4.08	<4	<4.08	<4	<4.08	<4	<4.08	<4	<8.94	<8.76	<20.4	<20
* CL1786256	BH06 2.00	<4.12	<4	<4.12	<4	<4.12	<4	<4.12	<4	<9	<8.76	<20.6	<20
* CL1786257	BH06 3.00	<4.08	<4	<4.08	<4	<4.08	5.53	4.93	<4	25.3	12.8	33.2	21.9
* CL1786258	BH07 1.00	<4.12	<4	<4.12	<4	<4.12	7.65	<4.12	<4	<9	<8.76	<20.6	<20
* CL1786259	BH07 2.00	<4.12	<4	<4.12	<4	<4.12	<4	<4.12	<4	<9	<8.76	<20.6	<20
* CL1786260	BH08 1.00	<4.12	<4	<4.12	<4	<4.12	5.2	<4.12	<4	<9	<8.76	<20.6	<20
* CL1786261	BH08 2.00	<4.04	<4	<4.04	<4	<4.04	<4	<4.04	<4	11.2	<8.76	<20.2	<20
* CL1786262	BH09 0.50	<4.08	<4	<4.08	<4	<4.08	4.96	<4.08	<4	11.2	<8.76	<20.4	<20
* CL1786263	BH09 2.00	<4.08	<4	<4.08	<4	<4.08	7.11	<4.08	<4	<8.94	<8.76	<20.4	<20
* CL1786265	QC Blank	<4.04	<4	<4.04	<4	<4.04	<4	<4.04	<4	<8.85	<8.76	<20.2	<20
* CL1786266	Reference Material (% Recovery)	95%	102%	90%	132%*	88%	102%	90%	94%	95%	100%	90%	100%

ALIPHATIC / AROMATIC FRACTION BY GC/FID

Customer and Site Details: Job Number:	Causeway Geotech Ltd : S18_1264	: Avoca River Sec	liment Sampling Separation:	Silica gel				Matrix: Date Booked in:	Soil 05-Dec-17				
QC Batch Number:	171346		Eluents:	Hexane, DCM				Date Extracted:	15-Dec-17				
Directory: Method:		1917 IPH_GC15(1	121917 2017-12	-19 09-54-58\On	lineEdited042E	3.D		Date Analysed:	19-Dec-17, 18:2	24:50			
					Co	ncentration,	(mg/kg) - as	wet weight					
* This sample data is not U	KAS accredited.	>C8 - C10		>C10	- C12	>C12	- C16	>C16 - C	21	>C21	- C35	>C8 - C40	
Sample ID Client ID		Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics
* CL1786240	BH01 0.10	<4.12	<4	<4.12	<4*	<4.12	<4	<4.12	<4	<9	<8.76	<20.6	<20
* CL1786241	BH01 1.00	<4.12	<4	<4.12	<4*	<4.12	<4	<4.12	<4	<9	<8.76	<20.6	<20
* CL1786242	BH02 0.50	<4.08	<4	<4.08	<4*	<4.08	7.4	<4.08	<4	18.9	<8.76	21.6	<20
* CL1786243	BH02 1.50	<4.12	<4	<4.12	<4*	<4.12	5.76	<4.12	<4	<9	<8.76	<20.6	<20
* CL1786244	BH03 0.50	<4.08	<4	<4.08	<4*	<4.08	<4	<4.08	<4	<8.94	<8.76	<20.4	<20
* CL1786245	BH03 1.50	<4.12	<4	<4.12	<4*	<4.12	4.59	<4.12	<4	<9	<8.76	<20.6	<20
* CL1786246	BH03 2.50	<4.12	<4	<4.12	<4*	<4.12	5.33	<4.12	<4	<9	<8.76	<20.6	<20
* CL1786247	BH04 0.50	<4	<4	<4	<4*	<4	6.26	<4	<4	<8.76	<8.76	<20	<20
* CL1786248	BH04 1.50	<4.12	<4	<4.12	<4*	<4.12	<4	<4.12	<4	<9	<8.76	<20.6	<20
* CL1786249	BH04 2.50	<4.08	<4	<4.08	<4*	<4.08	5.88	<4.08	<4	20.3	<8.76	25.1	<20
* CL1786250	BH05 0.50	<4.08	<4	<4.08	<4*	<4.08	<4	<4.08	<4	<8.94	<8.76	<20.4	<20
* CL1786251	BH05 1.00	<4	<4	<4	<4*	<4	6.31	<4	<4	<8.76	<8.76	<20	<20

Client	Courseway Costoch I td			Leaching Data			
Client	Causeway Geolech Llu				Weight of sample (kg)	0.098	
Contact				Moisture content @ 105°C (% of Wet Weight) 7.			
Contact	Nell Hayyan			Equivalent Weight based on drying at 105°C (kg) 0.09			
Sito	Avena River Sediment S	ompling		Volume of water required to carry out 10:1 stage (litres)	0.892		
Sile	Avoca River Sediment Sa	amping		Fraction of sample above 4 mm %	8.200		
Sample Description		Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000	
BH01 0 10		019 1264	CL /1796240	22 Dec 17			
BH01 0.10		510_1204	CL/1700240	22-Dec-17			

Note:	The >4mm fracti	ion is crushed using a disc mill				
_				Landfill Was	te Acceptance Cri	teria Limit Values
Accreditatior	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
U	WSLM59	Total Organic Carbon (% M/M)	0.21	3	5	6
Ν	LOI450	Loss on Ignition (%)	0.7			10
Ν	BTEXHSA	Sum of BTEX (mg/kg)	<0.055	6		
	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	<0.60	1		
Ν	TPHFIDUS	Mineral Oil (mg/kg)	29§	500		
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.49	100		
Ν	PHSOIL	pH (pH units)	4.7 §		>6	
	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7			To be evaluated	To be evaluated

50 50 50 mg/l except *** mg/kg (dry weight) mg/kg (dry weight) WSLM3 pH (pH units) *** Conductivity (µs/cm) *** Calculated data not UKAS Accredited ***** U ICPMSW Arsenic <0.001 <0.01 0.5 2 25 U ICPMATVAR Barium 0.02 0.2 20 100 300 U ICPMSW Cadmium <0.001 <0.001 0.04 1 5 U ICPMSW Cadmium <0.001 <0.01 0.2 20 100 300 U ICPMSW Cadmium <0.001 <0.01 0.2 2 10 70 U ICPMSW Copper 0.001 <0.01 0.2 2 50 100 70 U ICPMSW Mercury <0.0001 0.01 0.1 0.2 2 2 U ICPMSW Molybdenum 0.01 0.01 0.4 10 40	
WSLM3 pH (pH units) ⁰⁰ Calculated data not UKAS Accredited U ICPMSW Arsenic <0.001 <0.01 0.5 2 25 U ICPWATVAR Barium 0.02 0.2 20 100 300 U ICPMSW Cadmium <0.001 <0.01 0.04 1 5 U ICPMSW Cadmium <0.001 <0.001 0.04 1 5 U ICPMSW Cadmium <0.001 <0.01 0.5 10 70 U ICPMSW Chromium <0.001 <0.01 0.2 2 50 100 U ICPMSW Copper 0.001 <0.01 0.2 2 2 U ICPMSW Mercury <0.001 <0.01 0.01 0.2 2 U ICPMSW Molybdenum 0.01 0.1 0.5 10 30 U ICPMSW Nickel 0.001 0.01 0.5	
WSLM2 Conductivity (µs/cm) ⁰⁰ Conductivity (µs/cm) ⁰⁰ Conductivity (µs/cm) ⁰⁰ U ICPMSW Arsenic <0.001 <0.01 0.5 2 25 U ICPWATVAR Barium 0.02 0.2 20 100 300 U ICPMSW Cadmium <0.001 <0.001 0.04 1 5 U ICPMSW Cadmium <0.0001 <0.001 0.04 1 5 U ICPMSW Cadmium <0.001 <0.001 0.04 1 5 U ICPMSW Chromium <0.001 <0.01 0.5 10 70 U ICPMSW Copper 0.001 <0.01 0.01 0.2 2 U ICPMSW Mercury <0.001 <0.001 0.01 0.2 2 U ICPMSW Molybdenum 0.01 0.1 0.5 10 30 U ICPMSW Nickel 0.001 <0.01 </th <th></th>	
U ICPMSW Arsenic <0.001 <0.01 0.5 2 25 U ICPWATVAR Barium 0.02 0.2 20 100 300 U ICPMSW Cadmium <0.001	
U ICPWATVAR Barium 0.02 0.2 20 100 300 U ICPMSW Cadmium <0.0001	
U ICPMSW Cadmium <0.0001 <0.001 0.04 1 5 U ICPMSW Chromium <0.001	
U ICPMSW Chromium <0.001 <0.01 0.5 10 70 U ICPMSW Copper 0.001 0.01 2 50 100 U ICPMSW Mercury <0.001	
U ICPMSW Copper 0.001 0.01 2 50 100 U ICPMSW Mercury <0.0001	
U ICPMSW Mercury <0.0001 <0.001 0.01 0.2 2 U ICPMSW Molybdenum 0.01 0.1 0.5 10 30 U ICPMSW Nickel 0.001 0.01 0.4 10 40 U ICPMSW Lead <0.001	
U ICPMSW Molybdenum 0.01 0.1 0.5 10 30 U ICPMSW Nickel 0.001 0.01 0.4 10 40 U ICPMSW Lead <0.001 <0.01 0.5 10 50 U ICPMSW Lead <0.001 <0.01 0.06 0.7 5 U ICPMSW Antimony <0.001 <0.01 0.1 0.5 7	
U ICPMSW Nickel 0.001 0.01 0.4 10 40 U ICPMSW Lead <0.001	
U ICPMSW Lead <0.001 <0.01 0.5 10 50 U ICPMSW Antimony <0.001	
U ICPMSW Antimony <0.001 <0.01 0.06 0.7 5 IL ICPMSW Selenium <0.001	
LL ICPMSW Selenium <0.001 <0.01 0.1 0.5 7	
U ICPMSW Zinc 0.005 0.05 4 50 200	
U KONENS Chloride 24 240 800 15000 2500)
U ISEF Fluoride 0.2 2 10 150 500	
U ICPWATVAR Sulphate as SO4 76 760 1000 20000 5000)
N WSLM27 Total Dissolved Solids 223 2230 4000 60000 10000	0
SFAPI Phenol Index 1	
N WSLM13 Dissolved Organic Carbon 1.6 16 500 800 1000	

Client	Courseway Costoch I td			Leaching Data			
Client	Causeway Geolech Llu				Weight of sample (kg)	0.106	
Contact				Moisture content @ 105°C (% of Wet Weight) 13			
Contact	Nell Hayyan			Equivalent Weight based on drying at 105°C (kg) 0.0			
Sito	Avena River Sediment S	ompling			Volume of water required to carry out 10:1 stage (litres)	0.884	
Sile	Avoca River Sediment Sa	amping		Fraction of sample above 4 mm %	14.600		
Sample Description		Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000	
BH01 1 00		019 1264	CL /17962/1	22 Dec 17			
BHUT 1.00		510_1204	CL/1700241	22-Dec-17			

Note:	The >4mm fracti	ion is crushed using a disc mill				
_				Landfill Was	te Acceptance Cri	teria Limit Values
Accreditatior	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)		Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
U	WSLM59	Total Organic Carbon (% M/M)	0.35	3	5	6
Ν	LOI450	Loss on Ignition (%)	1.3			10
Ν	BTEXHSA	Sum of BTEX (mg/kg)	<0.06	6		
	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	<0.60	1		
Ν	TPHFIDUS	Mineral Oil (mg/kg)	35§	500		
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.57	100		
Ν	PHSOIL	pH (pH units)	4.6 §		>6	
	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7			To be evaluated	To be evaluated

by fs mg/l except % mg/kg (dry weight) mg/kg (dry weight) WSLM3 pH (pH units) % Calculated data not UKAS Accredited	editation	od Code	Leachate Analysis	10:1 Single Stage Leachate	Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/2 @ L/S 10 litre kg-1			
WSLM3 pH (pH units) ^{oo} Calculated data not UKAS Accredited Image: Calculated data not UKAS Accredited data not UKAS Accredited data not UKAS Accredited Image: Calculated data not UKAS Accredited data not Not Not UKAS Accredited data not UKAS Accredited data not UKAS Accredited data not Not Not Data Image: Calculated data not Not Not Not Not Not Not Not Not No	Accre	Meth		mg/l except ⁰⁰	mg/kg (dry weight)		mg/kg (dry weig	ht)	
WSLM2 Conductivity (µs/cm) ⁰⁰ Conduction and to the foctable U ICPMSW Arsenic 0.003 0.03 0.5 2 25 U ICPMSW Barium 0.01 0.1 20 100 300 U ICPMSW Cadmium 0.001 0.01 0.04 1 5 U ICPMSW Cadmium 0.003 0.03 0.5 10 70 U ICPMSW Copper 0.003 0.03 2 50 100 U ICPMSW Mercury <0.001		WSLM3	pH (pH units) ⁰⁰		Calculated data not LIKAS Accredited				
U ICPMSW Arsenic 0.003 0.03 0.5 2 25 U ICPWATVAR Barium 0.01 0.1 20 100 300 U ICPMSW Cadmium <0.001		WSLM2	Conductivity (µs/cm) ⁰⁰		Calculated data not OKAS Accredited				
U ICPWATVAR Barium 0.01 0.1 20 100 300 U ICPMSW Cadmium <0.0001	U	ICPMSW	Arsenic	0.003	0.03	0.5	2	25	
U ICPMSW Cadmium <0.0001 <0.001 0.04 1 5 U ICPMSW Chromium 0.003 0.03 0.5 10 70 U ICPMSW Copper 0.003 0.03 2 50 100 U ICPMSW Mercury <0.001	U	ICPWATVAR	Barium	0.01	0.1	20	100	300	
U ICPMSW Chromium 0.003 0.03 0.5 10 70 U ICPMSW Copper 0.003 0.03 2 50 100 U ICPMSW Mercury <0.001	U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5	
U ICPMSW Copper 0.003 0.03 2 50 100 U ICPMSW Mercury <0.0001	U	ICPMSW	Chromium	0.003	0.03	0.5	10	70	
U ICPMSW Mercury <0.0001 <0.001 0.01 0.2 2 U ICPMSW Molybdenum 0.006 0.06 0.5 10 30 U ICPMSW Nickel 0.001 0.01 0.4 10 40 U ICPMSW Lead 0.03 0.3 0.5 10 50 U ICPMSW Antimony 0.002 0.02 0.06 0.7 5 U ICPMSW Selenium <0.001	U	ICPMSW	Copper	0.003	0.03	2	50	100	
U ICPMSW Molybdenum 0.006 0.06 0.5 10 30 U ICPMSW Nickel 0.001 0.01 0.4 10 40 U ICPMSW Lead 0.03 0.3 0.5 10 50 U ICPMSW Antimony 0.002 0.02 0.06 0.7 5 U ICPMSW Selenium <0.001	U	ICPMSW	Mercury	<0.0001	<0.001	0.01	0.2	2	
U ICPMSW Nickel 0.001 0.01 0.4 10 40 U ICPMSW Lead 0.03 0.3 0.5 10 50 U ICPMSW Antimony 0.002 0.02 0.06 0.7 5 U ICPMSW Selenium <0.001	U	ICPMSW	Molybdenum	0.006	0.06	0.5 10 3		30	
U ICPMSW Lead 0.03 0.3 0.5 10 50 U ICPMSW Antimony 0.002 0.02 0.06 0.7 5 U ICPMSW Selenium <0.001	U	ICPMSW	Nickel	0.001	0.01	0.4	10	40	
U ICPMSW Antimony 0.002 0.02 0.06 0.7 5 U ICPMSW Selenium <0.001	U	ICPMSW	Lead	0.03	0.3	0.5	10	50	
U ICPMSW Selenium <0.001 <0.01 0.1 0.5 7 U ICPMSW Zinc 0.026 0.26 4 50 200 U KONENS Chloride 113 1130 800 15000 25000 U ISEF Fluoride 0.1 1 10 150 500 U ISEF Fluoride 0.1 1 100 1500 25000 U ISEF Fluoride 0.1 1 100 1500 500 U ICPWATVAR Sulphate as SO4 52 520 1000 20000 50000 N WSLM27 Total Dissolved Solids 377 3770 4000 60000 100000 SFAPI Phenol Index 1 1 1 1 1 100 N WSLM13 Dissolved Organic Carbon 2.8 28 500 800 1000	U	ICPMSW	Antimony	0.002	0.02	0.06	0.7	5	
U ICPMSW Zinc 0.026 0.26 4 50 200 U KONENS Chloride 113 1130 800 15000 25000 U ISEF Fluoride 0.1 1 10 150 500 U ISEF Fluoride 0.1 1 100 20000 50000 U ICPWATVAR Sulphate as SO4 52 520 1000 20000 50000 N WSLM27 Total Dissolved Solids 377 3770 4000 60000 100000 SFAPI Phenol Index 1 1 1 1 1 100 100000 N WSLM13 Dissolved Organic Carbon 2.8 28 500 800 1000	U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7	
U KONENS Chloride 113 1130 800 15000 25000 U ISEF Fluoride 0.1 1 10 150 500 U ISEF Fluoride 0.1 1 10 150 500 U ICPWATVAR Sulphate as SO4 52 520 1000 20000 50000 N WSLM27 Total Dissolved Solids 377 3770 4000 60000 100000 SFAPI Phenol Index 1 1 1 1 1 N WSLM13 Dissolved Organic Carbon 2.8 28 500 800 1000	U	ICPMSW	Zinc	0.026	0.26	4	50	200	
U ISEF Fluoride 0.1 1 10 150 500 U ICPWATVAR Sulphate as SO4 52 520 1000 20000 50000 N WSLM27 Total Dissolved Solids 377 3770 4000 60000 100000 SFAPI Phenol Index 1 1 10 1000 N WSLM13 Dissolved Organic Carbon 2.8 28 500 800 1000	U	KONENS	Chloride	113	1130	800	15000	25000	
U ICPWATVAR Sulphate as SO4 52 520 1000 20000 50000 N WSLM27 Total Dissolved Solids 377 3770 4000 60000 100000 SFAPI Phenol Index 1 1 1000 10000 N WSLM13 Dissolved Organic Carbon 2.8 28 500 800 10000	U	ISEF	Fluoride	0.1	1	10	150	500	
N WSLM27 Total Dissolved Solids 377 3770 4000 60000 100000 SFAPI Phenol Index 1 1 1 10000 N WSLM13 Dissolved Organic Carbon 2.8 28 500 800 10000	U	ICPWATVAR	Sulphate as SO4	52	520	1000	20000	50000	
SFAPI Phenol Index 1 1 N WSLM13 Dissolved Organic Carbon 2.8 28 500 800 1000	N	WSLM27	Total Dissolved Solids	377	3770	4000	60000	100000	
N WSLM13 Dissolved Organic Carbon 2.8 28 500 800 1000		SFAPI	Phenol Index			1			
	Ν	WSLM13	Dissolved Organic Carbon	2.8	28	500	800	1000	

Client	Courseway Cootoob Ltd				Leaching Data			
Client	Causeway Geolech Llu				Weight of sample (kg)	0.095		
Contact				Moisture content @ 105°C (% of Wet Weight)				
Comaci	Nell Hayyan				Equivalent Weight based on drying at 105°C (kg)	0.090		
Site	Aveca Diver Sediment S	ompling		Volume of water required to carry out 10:1 stage (litres)	0.895			
Sile	Avoca River Sediment Sa	ampling			Fraction of sample above 4 mm %	73.000		
Samp	le Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000		
DH02.0.50		c19 1264	CL /1796242	22 Dec 17				
	BH02 0.30	S10_1204 CL/1700242 22-De		22-Dec-17				
Note: The >4mm fract	ion is crushed using a disc mill							

_				Landfill Was	te Acceptance Cri	teria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
U	WSLM59	Total Organic Carbon (% M/M)	0.13	3	5	6
Ν	LOI450	Loss on Ignition (%)	0.5			10
Ν	BTEXHSA	Sum of BTEX (mg/kg)	<0.055	6		
	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	<0.60	1		
Ν	TPHFIDUS	Mineral Oil (mg/kg)	58§	500		
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.47	100		
Ν	PHSOIL	pH (pH units)	7.3 §		>6	
	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7			To be evaluated	To be evaluated

editation	od Code	Leachate Analysis	10:1 Single Stage Leachate	Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/2 @ L/S 10 litre kg-1			
Accre	Meth		mg/l except ⁰⁰	mg/kg (dry weight)		mg/kg (dry weig	ht)	
	WSLM3	pH (pH units) ^{oo}		Calculated data pot LIKAS Accredited				
	WSLM2	Conductivity (µs/cm) ⁰⁰		Calculated data not OKAS Accredited				
U	ICPMSW	Arsenic	0.002	0.02	0.5	2	25	
U	ICPWATVAR	Barium	<0.01	<0.1	20	100	300	
U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5	
U	ICPMSW	Chromium	<0.001	<0.01	0.5 10		70	
U	ICPMSW	Copper	0.003	0.03	2 50 1		100	
U	ICPMSW	Mercury	<0.0001	<0.001	0.01 0.2 2		2	
U	ICPMSW	Molybdenum	0.002	0.02	0.5 10		30	
U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40	
U	ICPMSW	Lead	0.007	0.07	0.5	10	50	
U	ICPMSW	Antimony	<0.001	<0.01	0.06	0.7	5	
U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7	
U	ICPMSW	Zinc	0.012	0.12	4	50	200	
U	KONENS	Chloride	27	270	800	15000	25000	
U	ISEF	Fluoride	0.2	2	10	150	500	
U	ICPWATVAR	Sulphate as SO4	17	170	1000	20000	50000	
Ν	WSLM27	Total Dissolved Solids	121	1210	4000	60000	100000	
	SFAPI	Phenol Index			1			
Ν	WSLM13	Dissolved Organic Carbon	0.92	9.2	500	800	1000	
Tomple	ate Ver 1			Landfill W	aste Accentance Cri	toria limit values corre	ct as of 11th March 2009	

Client	Caugaway Caataah Ltd			Leaching Data			
Client	Causeway Geolech Llu			Weight of sample (kg)	0.099		
Contact				Moisture content @ 105°C (% of Wet Weight) 8.			
Comaci	Nell Hayyan			Equivalent Weight based on drying at 105°C (kg) 0.09			
Site	Avena River Sediment S	ompling			Volume of water required to carry out 10:1 stage (litres)		
Sile	Avoca River Sediment Sa	amping		Fraction of sample above 4 mm %	3.000		
Sample Description		Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000	
BH02.1.50		-19, 1001 <u>CL/1700040</u>		22 Dec 17			
	502 1.50	\$10_1204	CL/1700243	22-Dec-17			

Note:	Note: The >4mm fraction is crushed using a disc mill								
_		۵		Landfill Waste Acceptance Criteria Limit Values					
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill			
U	WSLM59	Total Organic Carbon (% M/M)	0.16	3	5	6			
Ν	LOI450	Loss on Ignition (%)	0.5			10			
Ν	BTEXHSA	Sum of BTEX (mg/kg)	<0.055	6					
	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	<0.60	1					
Ν	TPHFIDUS	Mineral Oil (mg/kg)	19§	500					
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.49	100					
Ν	PHSOIL	pH (pH units)	8.5 §		>6				
	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7			To be evaluated	To be evaluated			

editation	ອ ວິ ອີ ອີ ອີ ອີ ອີ ອີ ອີ ອີ ອີ ອີ ອີ ອີ ອີ		10:1 Single Stage Leachate	Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/2 @ L/S 10 litre kg-1			
Accre	Meth		mg/l except ⁰⁰	mg/kg (dry weight)	mg/kg (dry weight)		ht)	
	WSLM3	pH (pH units) ºº		Calculated data not LIKAS Accredited				
	WSLM2	Conductivity (µs/cm) ⁰⁰		Calculated data not office Accredited				
U	ICPMSW	Arsenic	0.003	0.03	0.5	2	25	
U	ICPWATVAR	Barium	<0.01	<0.1	20	100	300	
U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5	
U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70	
U	ICPMSW	Copper	0.003	0.03	2	50	100	
U	ICPMSW	Mercury	<0.0001	<0.001	0.01	0.2	2	
U	ICPMSW	Molybdenum	0.003	0.03	0.5	10	30	
U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40	
U	ICPMSW	Lead	0.004	0.04	0.5	10	50	
U	ICPMSW	Antimony	0.002	0.02	0.06	0.7	5	
U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7	
U	ICPMSW	Zinc	0.007	0.07	4	50	200	
U	KONENS	Chloride	42	420	800	15000	25000	
U	ISEF	Fluoride	0.2	2	10	150	500	
U	ICPWATVAR	Sulphate as SO4	14	140	1000	20000	50000	
N	WSLM27	Total Dissolved Solids	173	1730	4000	60000	100000	
	SFAPI	Phenol Index			1			
Ν	WSLM13	Dissolved Organic Carbon	1	10	500	800	1000	
Tomple	Familita Var 1							

Client	Caucaway Castach I th			Leaching Data						
Client	Causeway Geolech Llu			Weight of sample (kg)						
Contact				Moisture content @ 105°C (% of Wet Weight)						
Comaci	Nell Hayyan			Equivalent Weight based on drying at 105°C (kg) 0.0						
Site	Avera Diver Sediment Sempling				Volume of water required to carry out 10:1 stage (litres) 0.8					
Sile	Avoca River Sediment Sa	amping			Fraction of sample above 4 mm %	3.800				
Samp	le Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000				
		c19 1264	CL /1796244	22 Dec 17						
		S16_1204 CL/1760244 22-DeC-17		22-Det-17						
Note: The >4mm fract	ote: The >4mm fraction is crushed using a disc mill									

_	4			Landfill Was	te Acceptance Cri	teria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
U	WSLM59	Total Organic Carbon (% M/M)	0.18	3	5	6
Ν	LOI450	Loss on Ignition (%)	0.7			10
Ν	BTEXHSA	Sum of BTEX (mg/kg)	<0.055	6		
	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	<0.60	1		
Ν	TPHFIDUS	Mineral Oil (mg/kg)	28§	500		
N	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.50	100		
Ν	PHSOIL	pH (pH units)	7.2 §		>6	
	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7			To be evaluated	To be evaluated

by <th>editation</th> <th>od Code</th> <th>Leachate Analysis</th> <th>10:1 Single Stage Leachate</th> <th colspan="2">achate Calculated cumulative amount leached @ 10:1</th> <th colspan="3">Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/2 @ L/S 10 litre kg-1</th>	editation	od Code	Leachate Analysis	10:1 Single Stage Leachate	achate Calculated cumulative amount leached @ 10:1		Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/2 @ L/S 10 litre kg-1		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Accre	Meth		mg/l except ⁰⁰	mg/kg (dry weight)	mg/kg (dry weight)		ht)	
WSLM2 Conductivity (µs/cm) ⁰⁰ Calculate data file 0000 0000 00000000000000000000000000		WSLM3	pH (pH units) ^{oo}		Calculated data pot LIKAS Accredited	d data pat LIKAS Approdited			
U ICPMSW Arsenic 0.006 0.06 0.5 2 25 U ICPWATVAR Barium <0.01		WSLM2	Conductivity (µs/cm) ⁰⁰		Calculated data not OKAS Accredited				
U ICPWATVAR Barium <0.01 <0.1 20 100 300 U ICPMSW Cadmium <0.001	U	ICPMSW	Arsenic	0.006	0.06	0.5	2	25	
U ICPMSW Cadmium <0.0001 <0.001 0.04 1 5 U ICPMSW Chromium 0.002 0.02 0.5 10 70 U ICPMSW Copper 0.011 0.11 2 50 100 U ICPMSW Mercury <0.001	U	ICPWATVAR	Barium	<0.01	<0.1	20	100	300	
U ICPMSW Chromium 0.002 0.02 0.5 10 70 U ICPMSW Copper 0.011 0.11 2 50 100 U ICPMSW Mercury <0.0011	U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5	
U ICPMSW Copper 0.011 0.11 2 50 100 U ICPMSW Mercury <0.0001	U	ICPMSW	Chromium	0.002	0.02	0.5	10	70	
U ICPMSW Mercury <0.0001 <0.01 0.2 2 U ICPMSW Molybdenum 0.003 0.03 0.5 10 30 U ICPMSW Nickel 0.001 0.01 0.4 10 40 U ICPMSW Lead 0.023 0.23 0.5 10 50 U ICPMSW Antimony <0.001	U	ICPMSW	Copper	0.011	0.11	2	50	100	
U ICPMSW Molybdenum 0.003 0.03 0.5 10 30 U ICPMSW Nickel 0.001 0.01 0.4 10 40 U ICPMSW Lead 0.023 0.23 0.5 10 50 U ICPMSW Antimony <0.001	U	ICPMSW	Mercury	<0.0001	<0.001	0.01	0.2	2	
U ICPMSW Nickel 0.001 0.01 0.4 10 40 U ICPMSW Lead 0.023 0.23 0.5 10 50 U ICPMSW Antimony <0.001	U	ICPMSW	Molybdenum	0.003	0.03	0.5	10	30	
U ICPMSW Lead 0.023 0.23 0.5 10 50 U ICPMSW Antimony <0.001	U	ICPMSW	Nickel	0.001	0.01	0.4	10	40	
U ICPMSW Antimony <0.001 <0.01 0.06 0.7 5 U ICPMSW Selenium <0.001	U	ICPMSW	Lead	0.023	0.23	0.5	10	50	
U ICPMSW Selenium <0.001 <0.01 0.5 7 U ICPMSW Zinc 0.027 0.27 4 50 200 U KONENS Chloride 30 300 800 15000 25000 U ISEF Fluoride 0.3 3 10 150 500 U ICPWATVAR Sulphate as SO4 8 80 1000 20000 50000 N WSLM27 Total Dissolved Solids 113 1130 4000 60000 100000 N WSLM13 Dissolved Organic Carbon 1.2 12 500 800 1000	U	ICPMSW	Antimony	<0.001	<0.01	0.06	0.7	5	
U ICPMSW Zinc 0.027 0.27 4 50 200 U KONENS Chloride 30 300 800 15000 25000 U ISEF Fluoride 0.3 3 10 150 500 U ISEF Sulphate as SO4 8 80 1000 20000 50000 N WSLM27 Total Dissolved Solids 113 1130 4000 60000 100000 N WSLM13 Dissolved Organic Carbon 1.2 12 500 800 1000	U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7	
U KONENS Chloride 30 300 800 1500 25000 U ISEF Fluoride 0.3 3 10 150 500 U ICPWATVAR Sulphate as SO4 8 80 1000 20000 50000 N WSLM27 Total Dissolved Solids 113 1130 4000 60000 100000 SFAPI Phenol Index 1 1	U	ICPMSW	Zinc	0.027	0.27	4	50	200	
U ISEF Fluoride 0.3 3 10 150 500 U ICPWATVAR Sulphate as SO4 8 80 1000 20000 50000 N WSLM27 Total Dissolved Solids 113 1130 4000 60000 100000 SFAPI Phenol Index 1 1	U	KONENS	Chloride	30	300	800	15000	25000	
U ICPWATVAR Sulphate as SO4 8 1000 20000 50000 N WSLM27 Total Dissolved Solids 113 1130 4000 60000 100000 SFAPI Phenol Index 1 1	U	ISEF	Fluoride	0.3	3	10	150	500	
N WSLM27 Total Dissolved Solids 113 1130 4000 60000 100000 SFAPI Phenol Index 1 1 -	U	ICPWATVAR	Sulphate as SO4	8	80	1000	20000	50000	
SFAPI Phenol Index 1 N WSLM13 Dissolved Organic Carbon 1.2 12 500 800 1000	N	WSLM27	Total Dissolved Solids	113	1130	4000	60000	100000	
N WSLM13 Dissolved Organic Carbon 1.2 12 500 800 1000		SFAPI	Phenol Index			1			
	Ν	WSLM13	Dissolved Organic Carbon	1.2	12	500	800	1000	

Client	Causaway Gootooh Ltd			Leaching Data			
Client	Causeway Geolech Llu			Weight of sample (kg)			
Contact	Neil Heagen				Moisture content @ 105°C (% of Wet Weight)		
Contact	Nell Hayyan			Equivalent Weight based on drying at 105°C (kg) 0.0			
Sito	Avera Diver Sediment Sempling				Volume of water required to carry out 10:1 stage (litres)		
Sile	Avoca River Sediment Sa	amping		Fraction of sample above 4 mm %	4.800		
Sample Description		Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000	
		c19 1264	CL /1796245	22 Dec 17			
		510_1204	GL/1700243	22-Dec-17			

Note:	Note: The >4mm fraction is crushed using a disc mill								
_		٥		Landfill Waste Acceptance Criteria Limit Values					
Accreditatior	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill			
U	WSLM59	Total Organic Carbon (% M/M)	0.31	3	5	6			
Ν	LOI450	Loss on Ignition (%)	1			10			
Ν	BTEXHSA	Sum of BTEX (mg/kg)	<0.055	6					
	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	<0.60	1					
Ν	TPHFIDUS	Mineral Oil (mg/kg)	17§	500					
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.56	100					
Ν	PHSOIL	pH (pH units)	6.9 §		>6				
	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7			To be evaluated	To be evaluated			

by <th>editation</th> <th>od Code</th> <th>Leachate Analysis</th> <th colspan="2">10:1 Single Stage Leachate Calculated cumulative amount leached @ 10:1</th> <th colspan="3">Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/2 @ L/S 10 litre kg-1</th>	editation	od Code	Leachate Analysis	10:1 Single Stage Leachate Calculated cumulative amount leached @ 10:1		Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/2 @ L/S 10 litre kg-1		
$ \begin{array}{ c c c c c c c } \hline WSLM3 & pH (pH units) & 0 & Calculated data not UKAS Accredited & WSLM2 & Conductivity (µs/cm) & Calculated data not UKAS Accredited & WSLM3 & Conductivity (µs/cm) & 0 & Calculated data not UKAS Accredited & WSLM3 & Conductivity (µs/cm) & 0 & 0.003 & 0.03 & 0.5 & 2 & 25 & 0.5 & 0.003 & 0.01 & 0.01 & 0.001 & 0.001 & 0.001 & 0.001 & 0.001 & 0.001 & 0.001 & 0.001 & 0.001 & 0.001 & 0.001 & 0.001 & 0.001 & 0.001 & 0.01 &$	Accre	Meth		mg/l except ⁰⁰	mg/kg (dry weight)	mg/kg (dry weight)		ht)
WSLM2 Conductivity (µs/cm) ⁰⁰ Conduction of the one of the on		WSLM3	pH (pH units) ^{oo}		Calculated data pot LIKAS Accredited			
U ICPMSW Arsenic 0.003 0.03 0.5 2 25 U ICPWATVAR Barium <0.01		WSLM2	Conductivity (µs/cm) ⁰⁰		Calculated data not OKAS Accredited			
U ICPWATVAR Barium <0.01 <0.1 20 100 300 U ICPMSW Cadmium <0.001	U	ICPMSW	Arsenic	0.003	0.03	0.5	2	25
U ICPMSW Cadmium <0.001 <0.001 0.04 1 5 U ICPMSW Chromium <0.001	U	ICPWATVAR	Barium	<0.01	<0.1	20	100	300
U ICPMSW Chromium <0.001 <0.01 0.5 10 70 U ICPMSW Copper 0.004 0.04 2 50 100 U ICPMSW Mercury <0.0001	U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5
U ICPMSW Copper 0.004 0.04 2 50 100 U ICPMSW Mercury <0.0001	U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70
U ICPMSW Mercury <0.0001 <0.01 0.2 2 U ICPMSW Molybdenum 0.001 0.01 0.5 10 30 U ICPMSW Nickel <0.001	U	ICPMSW	Copper	0.004	0.04	2	50	100
U ICPMSW Molybdenum 0.001 0.01 0.5 10 30 U ICPMSW Nickel <0.001	U	ICPMSW	Mercury	<0.0001	<0.001	0.01	0.2	2
U ICPMSW Nickel <0.001 <0.01 0.4 10 40 U ICPMSW Lead 0.01 0.1 0.5 10 50 U ICPMSW Antimony <0.001	U	ICPMSW	Molybdenum	0.001	0.01	0.5	10	30
U ICPMSW Lead 0.01 0.1 0.5 10 50 U ICPMSW Antimony <0.001	U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40
U ICPMSW Antimony <0.001 <0.01 0.06 0.7 5 U ICPMSW Selenium <0.001	U	ICPMSW	Lead	0.01	0.1	0.5	10	50
U ICPMSW Selenium <0.001 <0.01 0.5 7 U ICPMSW Zinc 0.012 0.12 4 50 200 U KONENS Chloride 34 340 800 15000 25000 U ISEF Fluoride 0.3 3 10 150 500 U ICPWATVAR Sulphate as SO4 12 120 1000 20000 50000 N WSLM27 Total Dissolved Solids 128 1280 4000 60000 100000 N WSLM13 Dissolved Organic Carbon 1.2 12 500 800 1000	U	ICPMSW	Antimony	<0.001	<0.01	0.06	0.7	5
U ICPMSW Zinc 0.012 0.12 4 50 200 U KONENS Chloride 34 340 800 15000 25000 U ISEF Fluoride 0.3 3 10 150 500 U ICPWATVAR Sulphate as SO4 12 120 1000 20000 50000 N WSLM27 Total Dissolved Solids 128 1280 4000 60000 100000 SFAPI Phenol Index 1.2 12 500 800 1000 N WSLM13 Dissolved Organic Carbon 1.2 12 500 800 1000	U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7
U KONENS Chloride 34 340 800 1500 25000 U ISEF Fluoride 0.3 3 10 150 500 U ICPWATVAR Sulphate as SO4 12 120 1000 20000 50000 N WSLM27 Total Dissolved Solids 128 1280 4000 60000 100000 SFAPI Phenol Index 1 1	U	ICPMSW	Zinc	0.012	0.12	4	50	200
U ISEF Fluoride 0.3 3 10 150 500 U ICPWATVAR Sulphate as SO4 12 120 1000 20000 50000 N WSLM27 Total Dissolved Solids 128 1280 4000 60000 100000 SFAPI Phenol Index 1 1	U	KONENS	Chloride	34	340	800	15000	25000
U ICPWATVAR Sulphate as SO4 12 120 1000 20000 50000 N WSLM27 Total Dissolved Solids 128 1280 4000 60000 100000 SFAPI Phenol Index 1 1 - - N WSLM13 Dissolved Organic Carbon 1.2 12 500 800 1000	U	ISEF	Fluoride	0.3	3	10	150	500
N WSLM27 Total Dissolved Solids 128 4000 60000 100000 SFAPI Phenol Index 1 1 1 1 1 1 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 10000000 10000000 10000000 100000000 10000000000000000 1000000000000000000000000000000000000	U	ICPWATVAR	Sulphate as SO4	12	120	1000	20000	50000
SFAPI Phenol Index 1 N WSLM13 Dissolved Organic Carbon 1.2 12 500 800 1000	Ν	WSLM27	Total Dissolved Solids	128	1280	4000	60000	100000
N WSLM13 Dissolved Organic Carbon 1.2 12 500 800 1000		SFAPI	Phenol Index			1		
	Ν	WSLM13	Dissolved Organic Carbon	1.2	12	500	800	1000
Client	Coulooway Cootoob Ltd				Leaching Data			
--------------------	-------------------------	-----------	-------------------	---	--	-------	--	--
Client	Causeway Geolech Llu				Weight of sample (kg)			
Contact					Moisture content @ 105°C (% of Wet Weight)			
Comaci	Nell Hayyan			Equivalent Weight based on drying at 105°C (kg) 0.09				
Site	Avon Divor Sodimont S	ompling		Volume of water required to carry out 10:1 stage (litres)				
Sile	Avoca River Seuiment Sa	amping		Fraction of sample above 4 mm %	7.200			
Sample Description		Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000		
BL 102 0 50		019 1064	CL /1796246	00 Day 17				
BH03 2.50		\$10_1204	6_1264 CL/1766246					

Note:	Note: The >4mm fraction is crushed using a disc mill									
_				Landfill Was	te Acceptance Cri	teria Limit Values				
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)		Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill				
U	WSLM59	Total Organic Carbon (% M/M)	0.11	3	5	6				
Ν	LOI450	Loss on Ignition (%)	0.6			10				
Ν	BTEXHSA	Sum of BTEX (mg/kg)	<0.055	6						
	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	<0.60	1						
Ν	TPHFIDUS	Mineral Oil (mg/kg)	17§	500						
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.52	100						
Ν	PHSOIL	pH (pH units)	6.9 §		>6					
	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7			To be evaluated	To be evaluated				

editation	od Code	Leachate Analysis	10:1 Single Stage Leachate Calculated cumulative amount leached @ 10:1		Landfill Waste BSEI	Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/2 @ L/S 10 litre kg-1		
Accre	Meth		mg/l except ⁰⁰	mg/kg (dry weight)		mg/kg (dry weig	ht)	
	WSLM3	pH (pH units) ^{oo}		Calculated data pot LIKAS Accredited				
	WSLM2	Conductivity (µs/cm) ⁰⁰		Calculated data not ONAS Accredited				
U	ICPMSW	Arsenic	0.003	0.03	0.5	2	25	
U	ICPWATVAR	Barium	<0.01	<0.1	20	100	300	
U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5	
U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70	
U	ICPMSW	Copper	0.007	0.07	2	50	100	
U	ICPMSW	Mercury	<0.0001	<0.001	0.01 0.2		2	
U	ICPMSW	Molybdenum	0.002	0.02	0.5	10	30	
U	ICPMSW	Nickel	0.002	0.02	0.4	10	40	
U	ICPMSW	Lead	0.017	0.17	0.5	10	50	
U	ICPMSW	Antimony	<0.001	<0.01	0.06	0.7	5	
U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7	
U	ICPMSW	Zinc	0.015	0.15	4	50	200	
U	KONENS	Chloride	32	320	800	15000	25000	
U	ISEF	Fluoride	0.2	2	10	150	500	
U	ICPWATVAR	Sulphate as SO4	11	110	1000	20000	50000	
Ν	WSLM27	Total Dissolved Solids	114	1140	4000 60000 100000		100000	
	SFAPI	Phenol Index			1			
Ν	WSLM13	Dissolved Organic Carbon	0.98	9.8	500	800	1000	
Templa	ate Ver 1	· · · · · · · · · · · · · · · · · · ·		Landfill W	aste Accentance Cri	teria limit values corre	et as of 11th March 2009	

Client	Courseway Costoph Ltd				Leaching Data			
Client	Causeway Geolech Llu				Weight of sample (kg)			
Contact					Moisture content @ 105°C (% of Wet Weight)			
Comaci	Their Laggari				Equivalent Weight based on drying at 105°C (kg) 0.09			
Site	Avena River Sediment S	ompling		Volume of water required to carry out 10:1 stage (litres) 0.				
Sile	Avoca River Sediment Sa	amping		Fraction of sample above 4 mm %	17.800			
Samp	le Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000		
BH04.0.50		c18 1264	CL /1786247	22-Doc-17				
	51104 0.30	318_1204 CE/1780247 22-Dec-17		22-Det-17				
Note: The >4mm fract	ion is crushed using a disc mill							

_	a a			Landfill Was	te Acceptance Cri	teria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
U	WSLM59	Total Organic Carbon (% M/M)	0.16	3	5	6
Ν	LOI450	Loss on Ignition (%)	0.6			10
Ν	BTEXHSA	Sum of BTEX (mg/kg)	<0.055	6		
	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	<0.60	1		
Ν	TPHFIDUS	Mineral Oil (mg/kg)	11§	500		
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.47	100		
Ν	PHSOIL	pH (pH units)	6.9 §		>6	
	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7			To be evaluated	To be evaluated

by <th>editation</th> <th>od Code</th> <th>Leachate Analysis</th> <th>10:1 Single Stage Leachate</th> <th colspan="2">Single Stage Leachate Calculated cumulative amount leached @ 10:1</th> <th colspan="3">Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/2 @ L/S 10 litre kg-1</th>	editation	od Code	Leachate Analysis	10:1 Single Stage Leachate	Single Stage Leachate Calculated cumulative amount leached @ 10:1		Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/2 @ L/S 10 litre kg-1		
$ \begin{array}{ c c c c c c c } \hline WSLM3 & \mu(\mu) (\mu) (\mu) (m) & \hline Calculated data not UKAS Accredited \\ \hline WSLM2 & Conductivity (\mus/cm) & \hline Calculated data not UKAS Accredited \\ \hline WSLM3 & Conductivity (\mus/cm) & \hline Calculated data not UKAS Accredited \\ \hline WSLM3 & Krsenic & 0.003 & 0.03 & 0.5 & 2 & 25 \\ \hline U & ICPWSW & Arsenic & 0.001 & <0.01 & 0.04 & 1 & 5 \\ \hline U & ICPWSW & Cadmium & <0.001 & <0.001 & 0.04 & 1 & 5 \\ \hline U & ICPMSW & Cadmium & <0.001 & <0.01 & 0.04 & 1 & 5 \\ \hline U & ICPMSW & Copper & 0.006 & 0.06 & 2 & 50 & 100 \\ \hline U & ICPMSW & Mercury & <0.001 & <0.001 & 0.01 & 0.2 & 2 \\ \hline U & ICPMSW & Mercury & <0.001 & <0.001 & 0.01 & 0.2 & 2 \\ \hline U & ICPMSW & Molybdenum & <0.001 & <0.01 & 0.5 & 10 & 30 \\ \hline U & ICPMSW & Nokel & <0.001 & <0.01 & 0.5 & 10 & 30 \\ \hline U & ICPMSW & Nokel & <0.001 & <0.01 & 0.5 & 10 & 30 \\ \hline U & ICPMSW & Nickel & <0.001 & <0.01 & 0.4 & 10 & 40 \\ \hline U & ICPMSW & Nickel & <0.001 & <0.01 & 0.6 & 0.7 & 5 \\ \hline U & ICPMSW & Nickel & <0.001 & <0.01 & 0.06 & 0.7 & 5 \\ \hline U & ICPMSW & Selenium & <0.001 & <0.01 & 0.1 & 0.5 & 7 \\ \hline U & ICPMSW & Selenium & <0.001 & <0.01 & 0.17 & 0.17 & 4 & 50 & 200 \\ \hline U & KONENS & Choride & 8 & 80 & 800 & 15000 & 25000 \\ \hline U & KONENS & Choride & 0.2 & 2 & 10 & 150 & 500 \\ \hline U & ICPWATVAR Sulphate as SO4 & 7 & 7 & 70 & 1000 & 20000 & 50000 \\ \hline N & WSLM27 & Total Dissolved Solids & <60 & <600 & <4000 & 4000 & 60000 & 10000 \\ \hline N & WSLM3 & Dissolved Organic Carbon & 1 & 10 & 500 & 800 & 1000 \\ \hline \end{array}$	Accre	Meth		mg/I except ⁰⁰	mg/kg (dry weight)		mg/kg (dry weig	ht)	
WSLM2 Conductivity (µs/cm) ^{oo} Conductive value of the object of the o		WSLM3	pH (pH units) ⁰⁰		Calculated data not LIKAS Accredited				
U ICPMSW Arsenic 0.003 0.03 0.5 2 25 U ICPWATVAR Barium <0.01		WSLM2	Conductivity (µs/cm) ⁰⁰		Calculated data not OKAS Accredited				
U ICPWATVAR Barium <0.01 <0.1 20 100 300 U ICPMSW Cadmium <0.001	U	ICPMSW	Arsenic	0.003	0.03	0.5	2	25	
U ICPMSW Cadmium <0.0001 <0.001 0.04 1 5 U ICPMSW Chromium <0.001	U	ICPWATVAR	Barium	<0.01	<0.1	20	100	300	
U ICPMSW Chromium <0.001 <0.01 0.5 10 70 U ICPMSW Copper 0.006 0.06 2 50 100 U ICPMSW Mercury <0.0001	U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5	
U ICPMSW Copper 0.006 0.06 2 50 100 U ICPMSW Mercury <0.0001	U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70	
U ICPMSW Mercury <0.0001 <0.01 0.2 2 U ICPMSW Molybdenum <0.001	U	ICPMSW	Copper	0.006	0.06	2	50	100	
U ICPMSW Molybdenum <0.001 <0.01 0.5 10 30 U ICPMSW Nickel <0.001	U	ICPMSW	Mercury	<0.0001	<0.001	0.01 0.2 2		2	
U ICPMSW Nickel <0.001 <0.01 0.4 10 40 U ICPMSW Lead 0.011 0.11 0.5 10 50 U ICPMSW Antimony <0.001	U	ICPMSW	Molybdenum	<0.001	<0.01	0.5	10	30	
U ICPMSW Lead 0.011 0.11 0.5 10 50 U ICPMSW Antimony <0.001	U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40	
U ICPMSW Antimony <0.001 <0.01 0.06 0.7 5 U ICPMSW Selenium <0.001	U	ICPMSW	Lead	0.011	0.11	0.5	10	50	
U ICPMSW Selenium <0.001 <0.01 0.5 7 U ICPMSW Zinc 0.017 0.17 4 50 200 U KONENS Chloride 8 80 800 15000 25000 U ISEF Fluoride 0.2 2 10 150 500 U ICPWATVAR Sulphate as SO4 7 70 1000 20000 50000 N WSLM27 Total Dissolved Solids <60	U	ICPMSW	Antimony	<0.001	<0.01	0.06	0.7	5	
U ICPMSW Zinc 0.017 0.17 4 50 200 U KONENS Chloride 8 80 800 15000 25000 U ISEF Fluoride 0.2 2 10 150 500 U ISEF Sulphate as SO4 7 70 1000 20000 50000 N WSLM27 Total Dissolved Solids <60	U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7	
U KONENS Chloride 8 80 1500 25000 U ISEF Fluoride 0.2 2 10 150 500 U ICPWATVAR Sulphate as SO4 7 70 1000 20000 50000 N WSLM27 Total Dissolved Solids <60	U	ICPMSW	Zinc	0.017	0.17	4	50	200	
U ISEF Fluoride 0.2 2 10 150 500 U ICPWATVAR Sulphate as SO4 7 70 1000 20000 50000 N WSLM27 Total Dissolved Solids <60	U	KONENS	Chloride	8	80	800	15000	25000	
U ICPWATVAR Sulphate as SO4 7 1000 20000 50000 N WSLM27 Total Dissolved Solids <60	U	ISEF	Fluoride	0.2	2	10	150	500	
N WSLM27 Total Dissolved Solids <60 <600 4000 60000 100000 SFAPI Phenol Index 1 1 100000 </td <td>U</td> <td>ICPWATVAR</td> <td>Sulphate as SO4</td> <td>7</td> <td>70</td> <td>1000</td> <td>20000</td> <td>50000</td>	U	ICPWATVAR	Sulphate as SO4	7	70	1000	20000	50000	
SFAPI Phenol Index 1 1 N WSLM13 Dissolved Organic Carbon 1 10 500 800 1000	N	WSLM27	Total Dissolved Solids	<60	<600	4000	4000 60000 100000		
N WSLM13 Dissolved Organic Carbon 1 10 500 800 1000		SFAPI	Phenol Index			1			
	Ν	WSLM13	Dissolved Organic Carbon	1	10	500	800	1000	

Client	Coulooway Cootoob Ltd				Leaching Data			
Client	Causeway Geolech Llu				Weight of sample (kg)			
Contact					Moisture content @ 105°C (% of Wet Weight)			
Comaci	Nell Hayyan			Equivalent Weight based on drying at 105°C (kg) 0.04				
Site	Avon Divor Sodimont S	ompling		Volume of water required to carry out 10:1 stage (litres)				
Sile	Avoca River Seuiment Sa	amping		Fraction of sample above 4 mm %				
Samp	le Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000		
		c19 1264	s18_1264 CL/1786248					
		510_1204						

Note:	Note: The >4mm fraction is crushed using a disc mill									
-				Landfill Was	te Acceptance Cri	teria Limit Values				
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill				
U	WSLM59	Total Organic Carbon (% M/M)	0.17	3	5	6				
Ν	LOI450	Loss on Ignition (%)	0.5			10				
Ν	BTEXHSA	Sum of BTEX (mg/kg)	<0.055	6						
	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	<0.60	1						
Ν	TPHFIDUS	Mineral Oil (mg/kg)	14§	500						
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.50	100						
Ν	PHSOIL	pH (pH units)	7.4 §		>6					
	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7			To be evaluated	To be evaluated				

by <th>editation</th> <th>od Code</th> <th>Leachate Analysis</th> <th>10:1 Single Stage Leachate</th> <th colspan="2">Leachate Calculated cumulative amount leached @ 10:1</th> <th colspan="3">Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/2 @ L/S 10 litre kg-1</th>	editation	od Code	Leachate Analysis	10:1 Single Stage Leachate	Leachate Calculated cumulative amount leached @ 10:1		Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/2 @ L/S 10 litre kg-1		
WSLM3 pH (pH units) ^{oo} Calculated data not UKAS Accredited Image: Mail of the second se	Accre	Meth		mg/l except ⁰⁰	mg/kg (dry weight)		mg/kg (dry weig	ht)	
WSLM2 Conductivity (µs/cm) ⁰⁰ Conduction of the one		WSLM3	pH (pH units) ⁰⁰		Calculated data not LIKAS Accredited				
U ICPMSW Arsenic 0.004 0.04 0.5 2 25 U ICPWATVAR Barium <0.01		WSLM2	Conductivity (µs/cm) ⁰⁰		Calculated data not OKAS Accredited				
U ICPWATVAR Barium <0.01 <0.1 20 100 300 U ICPMSW Cadmium 0.0002 0.002 0.04 1 5 U ICPMSW Chromium <0.001	U	ICPMSW	Arsenic	0.004	0.04	0.5	2	25	
U ICPMSW Cadmium 0.0002 0.002 0.04 1 5 U ICPMSW Chromium <0.001	U	ICPWATVAR	Barium	<0.01	<0.1	20	100	300	
U ICPMSW Chromium <0.001 <0.01 0.5 10 70 U ICPMSW Copper 0.005 0.05 2 50 100 U ICPMSW Mercury <0.0001	U	ICPMSW	Cadmium	0.0002	0.002	0.04	1	5	
U ICPMSW Copper 0.005 0.05 2 50 100 U ICPMSW Mercury <0.0001	U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70	
U ICPMSW Mercury <0.0001 <0.01 0.2 2 U ICPMSW Molybdenum 0.005 0.05 0.5 10 30 U ICPMSW Nickel <0.001	U	ICPMSW	Copper	0.005	0.05	2	50	100	
U ICPMSW Molybdenum 0.005 0.05 10 30 U ICPMSW Nickel <0.001	U	ICPMSW	Mercury	<0.0001	<0.001	0.01 0.2		2	
U ICPMSW Nickel <0.001 <0.01 0.4 10 40 U ICPMSW Lead 0.003 0.03 0.5 10 50 U ICPMSW Antimony 0.001 0.01 0.06 0.7 5 U ICPMSW Selenium <0.001	U	ICPMSW	Molybdenum	0.005	0.05	0.5	10	30	
U ICPMSW Lead 0.003 0.03 0.5 10 50 U ICPMSW Antimony 0.001 0.01 0.06 0.7 5 U ICPMSW Selenium <0.001	U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40	
U ICPMSW Antimony 0.001 0.01 0.06 0.7 5 U ICPMSW Selenium <0.001	U	ICPMSW	Lead	0.003	0.03	0.5	10	50	
U ICPMSW Selenium <0.001 <0.01 0.5 7 U ICPMSW Zinc 0.013 0.13 4 50 200 U KONENS Chloride 31 310 800 15000 25000 U ISEF Fluoride 0.3 3 10 150 500 U ICPWATVAR Sulphate as SO4 20 200 1000 20000 50000 N WSLM27 Total Dissolved Solids 151 1510 4000 60000 100000 SFAPI Phenol Index 1 10 500 800 1000	U	ICPMSW	Antimony	0.001	0.01	0.06	0.7	5	
U ICPMSW Zinc 0.013 0.13 4 50 200 U KONENS Chloride 31 310 800 15000 25000 U ISEF Fluoride 0.3 3 10 150 500 U ISEF Sulphate as SO4 20 200 1000 20000 50000 V ICPWATVAR Sulphate as SO4 20 200 1000 60000 100000 N WSLM27 Total Dissolved Solids 151 1510 4000 60000 100000 SFAPI Phenol Index 1 10 500 800 1000	U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7	
U KONENS Chloride 31 310 800 1500 25000 U ISEF Fluoride 0.3 3 10 150 500 U ICPWATVAR Sulphate as SO4 20 200 1000 20000 50000 N WSLM27 Total Dissolved Solids 151 1510 4000 60000 100000 SFAPI Phenol Index 1 10 500 800 1000	U	ICPMSW	Zinc	0.013	0.13	4	50	200	
U ISEF Fluoride 0.3 3 10 150 500 U ICPWATVAR Sulphate as SO4 20 200 1000 20000 50000 N WSLM27 Total Dissolved Solids 151 1510 4000 60000 100000 SFAPI Phenol Index 1 1 1 100000 N WSLM13 Dissolved Organic Carbon 1 10 500 800 100000	U	KONENS	Chloride	31	310	800	15000	25000	
U ICPWATVAR Sulphate as SO4 20 2000 1000 20000 50000 N WSLM27 Total Dissolved Solids 151 1510 4000 60000 100000 SFAPI Phenol Index 1 1 1 1000 N WSLM13 Dissolved Organic Carbon 1 10 500 800 10000	U	ISEF	Fluoride	0.3	3	10	150	500	
N WSLM27 Total Dissolved Solids 151 1510 4000 60000 100000 SFAPI Phenol Index 1 1 1 1 1 N WSLM13 Dissolved Organic Carbon 1 10 500 800 10000	U	ICPWATVAR	Sulphate as SO4	20	200	1000	20000	50000	
SFAPI Phenol Index 1 1 N WSLM13 Dissolved Organic Carbon 1 10 500 800 1000	Ν	WSLM27	Total Dissolved Solids	151	1510	4000	4000 60000 100000		
N WSLM13 Dissolved Organic Carbon 1 10 500 800 1000		SFAPI	Phenol Index			1			
	Ν	WSLM13	Dissolved Organic Carbon	1	10	500	800	1000	

Client	Caugaway Caataah Ltd			Leaching Data			
Client	Causeway Geolech Llu				Weight of sample (kg)		
Contact					Moisture content @ 105°C (% of Wet Weight) 1		
Comaci	Nell Hayyan			Equivalent Weight based on drying at 105°C (kg) 0.07			
Site	Avena River Sediment S	ompling			Volume of water required to carry out 10:1 stage (litres)		
Sile	Avoca River Sediment Sa	amping		Fraction of sample above 4 mm %			
Samp	le Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000	
BU04.0.50		019 1064	CL /1796240	00 Day 17			
БП04 2.50		S10_1204 CL/1700249		22-DeC-17			

Note:	Note: The >4mm fraction is crushed using a disc mill									
_				Landfill Was	te Acceptance Cri	teria Limit Values				
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill				
U	WSLM59	Total Organic Carbon (% M/M)	0.09	3	5	6				
Ν	LOI450	Loss on Ignition (%)	0.4			10				
Ν	BTEXHSA	Sum of BTEX (mg/kg)	<0.06	6						
	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	<0.60	1						
Ν	TPHFIDUS	Mineral Oil (mg/kg)	38§	500						
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.58	100						
Ν	PHSOIL	pH (pH units)	8.6 §		>6					
	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7			To be evaluated	To be evaluated				

editation	od Code	Leachate Analysis	10:1 Single Stage Leachate	Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/2 @ L/S 10 litre kg-1		
Accre	Meth		mg/l except ⁰⁰	mg/kg (dry weight)		mg/kg (dry weig	ht)
	WSLM3	pH (pH units) ⁰⁰		Calculated data not LIKAS Accredited			
	WSLM2	Conductivity (µs/cm) ⁰⁰		Calculated data not ONAS Acciedited			
U	ICPMSW	Arsenic	0.002	0.02	0.5	2	25
U	ICPWATVAR	Barium	<0.01	<0.1	20	100	300
U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5
U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70
U	ICPMSW	Copper	0.001	0.01	2	50	100
U	ICPMSW	Mercury	<0.0001	<0.001	0.01 0.2		2
U	ICPMSW	Molybdenum	0.002	0.02	0.5	10	30
U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40
U	ICPMSW	Lead	<0.001	<0.01	0.5	10	50
U	ICPMSW	Antimony	0.002	0.02	0.06	0.7	5
U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7
U	ICPMSW	Zinc	0.006	0.06	4	50	200
U	KONENS	Chloride	53	530	800	15000	25000
U	ISEF	Fluoride	0.1	1	10	150	500
U	ICPWATVAR	Sulphate as SO4	18	180	1000	20000	50000
Ν	WSLM27	Total Dissolved Solids	203	2030	4000	4000 60000 100000	
	SFAPI	Phenol Index			1		
Ν	WSLM13	Dissolved Organic Carbon	0.85	8.5	500	800	1000
Templa	ate Ver 1			Landfill W	aste Acceptance Cri	teria limit values corre	ect as of 11th March 2009

Client	Courseway Costoch I td			Leaching Data					
Client	Causeway Geolech Llu				Weight of sample (kg)	0.093			
Contact					Moisture content @ 105°C (% of Wet Weight)				
Comaci	Nell Hayyan			Equivalent Weight based on drying at 105°C (kg) 0.09					
Site	Avena River Sediment S	ompling		Volume of water required to carry out 10:1 stage (litres) 0.					
Sile	Avoca River Sediment Sa	ampling		Fraction of sample above 4 mm %	18.700				
Sample Description		Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000			
		c18 1264	CL /1786250	22-Doc-17					
L	51103-0.30	310_1204 CL/1700230 22-Dec		22-Dec-17					
Note: The >4mm fract	vote: The >4mm fraction is crushed using a disc mill								

_				Landfill Was	te Acceptance Cri	teria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
U	WSLM59	Total Organic Carbon (% M/M)	0.5	3	5	6
Ν	LOI450	Loss on Ignition (%)	0.6			10
Ν	BTEXHSA	Sum of BTEX (mg/kg)	< 0.05	6		
	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	<0.60	1		
Ν	TPHFIDUS	Mineral Oil (mg/kg)	<10§	500		
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.42	100		
Ν	PHSOIL	pH (pH units)	7.5 §		>6	
	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7			To be evaluated	To be evaluated

by <th>editation</th> <th>od Code</th> <th>Leachate Analysis</th> <th>10:1 Single Stage Leachate</th> <th>Calculated cumulative amount leached @ 10:1</th> <th colspan="3">Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/2 @ L/S 10 litre kg-1</th>	editation	od Code	Leachate Analysis	10:1 Single Stage Leachate	Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/2 @ L/S 10 litre kg-1		
$ \begin{array}{ c c c c c c c } \hline WSLM3 & \mu(\mu) (\mu) (\mu) (m) & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Accre	Meth		mg/l except ⁰⁰	mg/kg (dry weight)		mg/kg (dry weig	ht)
WSLM2 Conductivity (µs/cm) ^{oo} Conduction of the other output of the		WSLM3	pH (pH units) ⁰⁰		Calculated data pot LIKAS Accredited			
U ICPMSW Arsenic 0.002 0.02 0.5 2 25 U ICPWATVAR Barium 0.01 0.1 20 100 300 U ICPMSW Cadmium <0.001		WSLM2	Conductivity (µs/cm) ⁰⁰		Calculated data not OKAS Accredited			
U ICPWATVAR Barium 0.01 0.1 20 100 300 U ICPMSW Cadmium <0.0001	U	ICPMSW	Arsenic	0.002	0.02	0.5	2	25
U ICPMSW Cadmium <0.0001 <0.001 0.04 1 5 U ICPMSW Chromium <0.001	U	ICPWATVAR	Barium	0.01	0.1	20	100	300
U ICPMSW Chromium <0.001 <0.01 0.5 10 70 U ICPMSW Copper 0.001 0.01 2 50 100 U ICPMSW Mercury <0.001	U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5
U ICPMSW Copper 0.001 0.01 2 50 100 U ICPMSW Mercury <0.0001	U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70
U ICPMSW Mercury <0.0001 0.01 0.2 2 U ICPMSW Molybdenum 0.002 0.02 0.5 10 30 U ICPMSW Nickel <0.001	U	ICPMSW	Copper	0.001	0.01	2	50	100
U ICPMSW Molybdenum 0.002 0.02 0.5 10 30 U ICPMSW Nickel <0.001	U	ICPMSW	Mercury	<0.0001	<0.001	0.01 0.2 2		2
U ICPMSW Nickel <0.001 <0.01 0.4 10 40 U ICPMSW Lead <0.001	U	ICPMSW	Molybdenum	0.002	0.02	0.5	10	30
U ICPMSW Lead <0.001 <0.01 0.5 10 50 U ICPMSW Antimony 0.001 0.01 0.06 0.7 5 U ICPMSW Selenium <0.001	U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40
U ICPMSW Antimony 0.001 0.01 0.06 0.7 5 U ICPMSW Selenium <0.001	U	ICPMSW	Lead	<0.001	<0.01	0.5	10	50
U ICPMSW Selenium <0.001 <0.01 0.5 7 U ICPMSW Zinc 0.002 0.02 4 50 200 U KONENS Chloride 82 820 800 15000 25000 U ISEF Fluoride 0.3 3 10 150 500 U ICPWATVAR Sulphate as SO4 37 370 1000 20000 50000 N WSLM27 Total Dissolved Solids 320 3200 4000 60000 100000 SFAPI Phenol Index 0.7 7 500 800 1000	U	ICPMSW	Antimony	0.001	0.01	0.06	0.7	5
U ICPMSW Zinc 0.002 0.02 4 50 200 U KONENS Chloride 82 820 800 15000 25000 U ISEF Fluoride 0.3 3 10 150 500 U ICPWATVAR Sulphate as SO4 37 370 1000 20000 50000 N WSLM27 Total Dissolved Solids 320 3200 4000 60000 100000 SFAPI Phenol Index 0.7 7 500 800 1000	U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7
U KONENS Chloride 82 820 800 1500 25000 U ISEF Fluoride 0.3 3 10 150 500 U ICPWATVAR Sulphate as SO4 37 370 1000 20000 50000 N WSLM27 Total Dissolved Solids 320 3200 4000 60000 100000 SFAPI Phenol Index 1 N WSLM13 Dissolved Organic Carbon 0.7 7 500 800 1000	U	ICPMSW	Zinc	0.002	0.02	4	50	200
U ISEF Fluoride 0.3 3 10 150 500 U ICPWATVAR Sulphate as SO4 37 370 1000 20000 50000 N WSLM27 Total Dissolved Solids 320 3200 4000 60000 100000 SFAPI Phenol Index 1 1 1 100000 N WSLM13 Dissolved Organic Carbon 0.7 7 500 800 100000	U	KONENS	Chloride	82	820	800	15000	25000
U ICPWATVAR Sulphate as SO4 37 370 1000 20000 50000 N WSLM27 Total Dissolved Solids 320 3200 4000 60000 100000 SFAPI Phenol Index 1 1 1 1 1000 N WSLM13 Dissolved Organic Carbon 0.7 7 500 800 1000	U	ISEF	Fluoride	0.3	3	10	150	500
N WSLM27 Total Dissolved Solids 320 3200 4000 60000 100000 SFAPI Phenol Index 1 1 1 1 1 100000 100000 100000 100000 100000 1000000 100000 100000 100000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 10000000 10000000 10000000 100000000 1000000000000000000000000000000000000	U	ICPWATVAR	Sulphate as SO4	37	370	1000	20000	50000
SFAPI Phenol Index 1 N WSLM13 Dissolved Organic Carbon 0.7 7 500 800 1000	Ν	WSLM27	Total Dissolved Solids	320	3200	4000 60000 100000		100000
N WSLM13 Dissolved Organic Carbon 0.7 7 500 800 1000		SFAPI	Phenol Index			1		
	Ν	WSLM13	Dissolved Organic Carbon	0.7	7	500	800	1000

Client	Causaway Gaataah Ltd				Leaching Data		
Client	Causeway Geolech Llu				Weight of sample (kg)	0.094	
Contact				Moisture content @ 105°C (% of Wet Weight)	5.4		
Comaci	Nell Hayyan			Equivalent Weight based on drying at 105°C (kg) 0.09			
Sito	Avena River Sediment S	ompling		Volume of water required to carry out 10:1 stage (litres)			
Sile	Avoca River Sediment Sa	amping		Fraction of sample above 4 mm %	49.000		
Sample Description		Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000	
BH05 1 00		019 1264	CL /1796251	22 Dec 17			
BH05 1.00		510_1204	GL/1700231	22-Dec-17			

Note:	lote: The >4mm fraction is crushed using a disc mill								
_				Landfill Was	te Acceptance Cri	teria Limit Values			
Accreditatior	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill			
U	WSLM59	Total Organic Carbon (% M/M)	0.15	3	5	6			
Ν	LOI450	Loss on Ignition (%)	0.6			10			
Ν	BTEXHSA	Sum of BTEX (mg/kg)	<0.055	6					
	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	<0.60	1					
Ν	TPHFIDUS	Mineral Oil (mg/kg)	25§	500					
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.44	100					
Ν	PHSOIL	pH (pH units)	7.1 §		>6				
	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7			To be evaluated	To be evaluated			

by <th>editation</th> <th>od Code</th> <th>Leachate Analysis</th> <th>10:1 Single Stage Leachate</th> <th>Calculated cumulative amount leached @ 10:1</th> <th colspan="4">Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/2 @ L/S 10 litre kg-1</th>	editation	od Code	Leachate Analysis	10:1 Single Stage Leachate	Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/2 @ L/S 10 litre kg-1			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Accre	Meth		mg/l except ⁰⁰	mg/kg (dry weight)		mg/kg (dry weig	ht)	
WSLM2 Conductivity (µs/cm) ^{oo} Calculate data file 0000 (0000 (0000)) Image data file 0000 (0000) Image data file 0000 (00000) Image data file 0000 (0000) Image data file 0000 (00000) Image dat		WSLM3	pH (pH units) ^{oo}		Calculated data pot LIKAS Accredited				
U ICPMSW Arsenic 0.002 0.02 0.5 2 25 U ICPWATVAR Barium <0.01		WSLM2	Conductivity (µs/cm) ⁰⁰						
U ICPWATVAR Barium <0.01 <0.1 20 100 300 U ICPMSW Cadmium <0.001	U	ICPMSW	Arsenic	0.002	0.02	0.5	2	25	
U ICPMSW Cadmium <0.0001 <0.001 0.04 1 5 U ICPMSW Chromium <0.001	U	ICPWATVAR	Barium	<0.01	<0.1	20	100	300	
U ICPMSW Chromium <0.001 <0.01 0.5 10 70 U ICPMSW Copper <0.001	U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5	
U ICPMSW Copper <0.001 <0.01 2 50 100 U ICPMSW Mercury <0.0001	U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70	
U ICPMSW Mercury <0.0001 <0.01 0.2 2 U ICPMSW Molybdenum 0.003 0.03 0.5 10 30 U ICPMSW Nickel <0.001	U	ICPMSW	Copper	<0.001	<0.01	2	50	100	
U ICPMSW Molybdenum 0.003 0.03 0.5 10 30 U ICPMSW Nickel <0.001	U	ICPMSW	Mercury	<0.0001	<0.001	0.01 0.2 2		2	
U ICPMSW Nickel <0.001 <0.01 0.4 10 40 U ICPMSW Lead <0.001	U	ICPMSW	Molybdenum	0.003	0.03	0.5	10	30	
U ICPMSW Lead <0.001 <0.01 0.5 10 50 U ICPMSW Antimony 0.001 0.01 0.06 0.7 5 U ICPMSW Selenium <0.001	U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40	
U ICPMSW Antimony 0.001 0.01 0.06 0.7 5 U ICPMSW Selenium <0.001	U	ICPMSW	Lead	<0.001	<0.01	0.5	10	50	
U ICPMSW Selenium <0.001 <0.01 0.5 7 U ICPMSW Zinc 0.006 0.06 4 50 200 U KONENS Chloride 62 620 800 15000 25000 U ISEF Fluoride 0.5 5 10 150 5000 U ICPWATVAR Sulphate as SO4 33 330 1000 20000 50000 N WSLM27 Total Dissolved Solids 2711 2710 4000 60000 100000 N WSLM13 Dissolved Organic Carbon 0.74 7.4 500 800 1000	U	ICPMSW	Antimony	0.001	0.01	0.06	0.7	5	
U ICPMSW Zinc 0.006 0.06 4 50 200 U KONENS Chloride 62 620 800 15000 25000 U ISEF Fluoride 0.5 5 10 150 5000 U ICPWATVAR Sulphate as SO4 33 330 1000 20000 50000 N WSLM27 Total Dissolved Solids 2710 4000 60000 100000 SFAPI Phenol Index 0.74 7.4 500 800 1000	U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7	
U KONENS Chloride 62 620 800 1500 25000 U ISEF Fluoride 0.5 5 10 150 500 U ICPWATVAR Sulphate as SO4 33 330 1000 20000 50000 N WSLM27 Total Dissolved Solids 2710 4000 60000 100000 SFAPI Phenol Index 0.74 7.4 500 800 1000	U	ICPMSW	Zinc	0.006	0.06	4	50	200	
U ISEF Fluoride 0.5 10 150 500 U ICPWATVAR Sulphate as SO4 33 330 1000 20000 50000 N WSLM27 Total Dissolved Solids 2710 4000 60000 100000 SFAPI Phenol Index 0.74 7.4 500 800 10000	U	KONENS	Chloride	62	620	800	15000	25000	
U ICPWATVAR Sulphate as SO4 33 330 1000 20000 50000 N WSLM27 Total Dissolved Solids 2710 4000 60000 100000 SFAPI Phenol Index 1 1 1000 10000 N WSLM13 Dissolved Organic Carbon 0.74 7.4 500 800 10000	U	ISEF	Fluoride	0.5	5	10	150	500	
N WSLM27 Total Dissolved Solids 271 2710 4000 60000 100000 SFAPI Phenol Index 1 1 1 1 1 1 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 10000000 10000000 100000000 1000000000000000000000000000000000000	U	ICPWATVAR	Sulphate as SO4	33	330	1000	20000	50000	
SFAPI Phenol Index 1 N WSLM13 Dissolved Organic Carbon 0.74 7.4 500 800 1000	N	WSLM27	Total Dissolved Solids	271	2710	4000	4000 60000 100000		
N WSLM13 Dissolved Organic Carbon 0.74 7.4 500 800 1000		SFAPI	Phenol Index			1			
	Ν	WSLM13	Dissolved Organic Carbon	0.74	7.4	500	800	1000	

Client	Caugaway Castach Ltd			Leaching Data					
Client	Causeway Geolech Llu				Weight of sample (kg)				
Contact				Moisture content @ 105°C (% of Wet Weight)					
Comaci	Nell Hayyan			Equivalent Weight based on drying at 105°C (kg) 0.0					
Site	Avena River Sediment S	ompling		Volume of water required to carry out 10:1 stage (litres) 0.					
Sile	Avoca River Sediment Sampling				Fraction of sample above 4 mm %	100.000			
Samp	le Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000			
		c18 1264	CL /1786252	22-Doc-17					
L	51105 2.00	310_1204 CL/1700232 22-Dec-1		22-Dec-17					
Note: The >4mm fract	lote: The >4mm fraction is crushed using a disc mill								

_				Landfill Was	te Acceptance Cri	teria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
U	WSLM59	Total Organic Carbon (% M/M)	0.15	3	5	6
Ν	LOI450	Loss on Ignition (%)	0.6			10
Ν	BTEXHSA	Sum of BTEX (mg/kg)	< 0.05	6		
	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	<0.60	1		
Ν	TPHFIDUS	Mineral Oil (mg/kg)	12§	500		
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.43	100		
Ν	PHSOIL	pH (pH units)	7.4 §		>6	
	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7			To be evaluated	To be evaluated

by <th>editation</th> <th>od Code</th> <th>Leachate Analysis</th> <th>10:1 Single Stage Leachate</th> <th>Calculated cumulative amount leached @ 10:1</th> <th colspan="2">Landfill Waste Acceptance Criteria Li BSEN 12457/2 @ L/S 10 litre</th> <th>ria Limit Values for 0 litre kg-1</th>	editation	od Code	Leachate Analysis	10:1 Single Stage Leachate	Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Li BSEN 12457/2 @ L/S 10 litre		ria Limit Values for 0 litre kg-1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Accre	Meth		mg/l except ⁰⁰	mg/kg (dry weight)		mg/kg (dry weig	ht)
WSLM2 Conductivity (µs/cm) ^{oo} Conductive (µs/cm) ^{oo} Conductive (µs/cm) ^{oo} U ICPMSW Arsenic 0.002 0.02 0.5 2 25 U ICPMATVAR Barium <0.01		WSLM3	pH (pH units) ⁰⁰		Calculated data not LIKAS Accredited			
U ICPMSW Arsenic 0.002 0.02 0.5 2 25 U ICPWATVAR Barium <0.01		WSLM2	Conductivity (µs/cm) ⁰⁰					
U ICPWATVAR Barium <0.01 <0.1 20 100 300 U ICPMSW Cadmium <0.001	U	ICPMSW	Arsenic	0.002	0.02	0.5	2	25
U ICPMSW Cadmium <0.0001 <0.001 0.04 1 5 U ICPMSW Chromium <0.001	U	ICPWATVAR	Barium	<0.01	<0.1	20	100	300
U ICPMSW Chromium <0.001 <0.01 0.5 10 70 U ICPMSW Copper 0.002 0.02 2 50 100 U ICPMSW Mercury <0.001	U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5
U ICPMSW Copper 0.002 0.02 2 50 100 U ICPMSW Mercury <0.0001	U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70
U ICPMSW Mercury <0.0001 <0.01 0.2 2 U ICPMSW Molybdenum 0.002 0.02 0.5 10 30 U ICPMSW Nickel <0.001	U	ICPMSW	Copper	0.002	0.02	2	50	100
U ICPMSW Molybdenum 0.002 0.02 0.5 10 30 U ICPMSW Nickel <0.001	U	ICPMSW	Mercury	<0.0001	<0.001	0.01 0.2 2		2
U ICPMSW Nickel <0.001 <0.01 0.4 10 40 U ICPMSW Lead 0.002 0.02 0.5 10 50 U ICPMSW Antimony <0.001	U	ICPMSW	Molybdenum	0.002	0.02	0.5	10	30
U ICPMSW Lead 0.002 0.02 0.5 10 50 U ICPMSW Antimony <0.001	U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40
U ICPMSW Antimony <0.001 <0.01 0.06 0.7 5 U ICPMSW Selenium <0.001	U	ICPMSW	Lead	0.002	0.02	0.5	10	50
U ICPMSW Selenium <0.001 <0.01 0.5 7 U ICPMSW Zinc 0.013 0.13 4 50 200 U KONENS Chloride 26 260 800 15000 25000 U ISEF Fluoride 0.2 2 10 150 500 U ICPWATVAR Sulphate as SO4 7 70 1000 20000 50000 N WSLM27 Total Dissolved Solids 92.7 927 4000 60000 100000 SFAPI Phenol Index 1	U	ICPMSW	Antimony	<0.001	<0.01	0.06	0.7	5
U ICPMSW Zinc 0.013 0.13 4 50 200 U KONENS Chloride 26 260 800 15000 25000 U ISEF Fluoride 0.2 2 10 150 500 U ISEF Sulphate as SO4 7 70 1000 20000 50000 N WSLM27 Total Dissolved Solids 92.7 927 4000 60000 100000 SFAPI Phenol Index 1	U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7
U KONENS Chloride 26 260 800 1500 25000 U ISEF Fluoride 0.2 2 10 150 500 U ICPWATVAR Sulphate as SO4 7 70 1000 20000 50000 N WSLM27 Total Dissolved Solids 92.7 927 4000 60000 100000 SFAPI Phenol Index 1	U	ICPMSW	Zinc	0.013	0.13	4	50	200
U ISEF Fluoride 0.2 2 10 150 500 U ICPWATVAR Sulphate as SO4 7 70 1000 20000 50000 N WSLM27 Total Dissolved Solids 92.7 927 4000 60000 100000 SFAPI Phenol Index 1 1 100000 N WSLM13 Dissolved Organic Carbon 0.63 6.3 500 800 10000	U	KONENS	Chloride	26	260	800	15000	25000
U ICPWATVAR Sulphate as SO4 7 70 1000 20000 50000 N WSLM27 Total Dissolved Solids 92.7 927 4000 60000 100000 SFAPI Phenol Index 1 1 1000 10000 N WSLM13 Dissolved Organic Carbon 0.63 6.3 500 800 10000	U	ISEF	Fluoride	0.2	2	10	150	500
N WSLM27 Total Dissolved Solids 92.7 927 4000 60000 100000 SFAPI Phenol Index 1 -	U	ICPWATVAR	Sulphate as SO4	7	70	1000	20000	50000
SFAPI Phenol Index 1 1 N WSLM13 Dissolved Organic Carbon 0.63 6.3 500 800 1000	Ν	WSLM27	Total Dissolved Solids	92.7	927	4000 60000 100000		100000
N WSLM13 Dissolved Organic Carbon 0.63 6.3 500 800 1000		SFAPI	Phenol Index			1		
	Ν	WSLM13	Dissolved Organic Carbon	0.63	6.3	500	800	1000

Client	Courseway Cootoob Ltd			Leaching Data				
Client	Causeway Geolech Lid				Weight of sample (kg)	0.098		
Contact					Moisture content @ 105°C (% of Wet Weight)	8.4		
Comaci	Nell Hayyan			Equivalent Weight based on drying at 105°C (kg) 0.0				
Site	Avon Diver Sediment S	ompling		Volume of water required to carry out 10:1 stage (litres) 0.8				
Sile	Avoca River Sediment Sa	amping		Fraction of sample above 4 mm %	57.100			
Samp	le Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000		
BH05 3 00		c19 1264	CL /1796252	22 Dec 17				
		S16_1204 CL/1780233 22-Dec-17		22-Det-17				
Note: The >4mm fraction is crushed using a disc mill								

-				Landfill Was	te Acceptance Cri	teria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
U	WSLM59	Total Organic Carbon (% M/M)	0.12	3	5	6
Ν	LOI450	Loss on Ignition (%)	0.5			10
Ν	BTEXHSA	Sum of BTEX (mg/kg)	<0.055	6		
	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	<0.60	1		
Ν	TPHFIDUS	Mineral Oil (mg/kg)	<11§	500		
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.48	100		
Ν	PHSOIL	pH (pH units)	7.4 §		>6	
	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7			To be evaluated	To be evaluated

ŠČ ŠČ ŠČ mg/l except ^{oo} mg/kg (dry weight) mg/kg (dry weight) WSLM3 pH (pH units) ^{oo} Calculated data not UKAS Accredited Calculated data not UKAS Accredited Calculated data not UKAS Accredited U ICPMSW Arsenic 0.002 0.02 0.5 2 25 U ICPWATVAR Barium <0.01 <0.1 20 100 300 U ICPWSW Cadmium <0.001 <0.01 0.04 1 55 U ICPMSW Cadmium <0.001 <0.01 0.04 1 55 U ICPMSW Cadmium <0.001 <0.01 0.02 100 300 U ICPMSW Copper <0.001 <0.01 0.2 10 70 U ICPMSW Mercury <0.001 <0.01 0.01 0.2 2 10 U ICPMSW Mercury <0.001 <0.01 0.01 0.2 2 2 10 <td< th=""><th>editation od Code</th><th>Leachate Analysis</th><th>10:1 Single Stage Leachate</th><th>Calculated cumulative amount leached @ 10:1</th><th>Landfill Waste BSEI</th><th colspan="3">Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/2 @ L/S 10 litre kg-1</th></td<>	editation od Code	Leachate Analysis	10:1 Single Stage Leachate	Calculated cumulative amount leached @ 10:1	Landfill Waste BSEI	Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/2 @ L/S 10 litre kg-1		
WSLM3 pH (pH units) O Calculated data not UKAS Accredited Image: Conductivity (µs/cm) O U ICPMSW Arsenic 0.002 0.02 0.5 2 25 U ICPWATVAR Barium <0.01 <0.1 20 100 30 U ICPMSW Cadmium <0.001 <0.01 0.04 1 5 U ICPMSW Cadmium <0.001 <0.01 0.04 1 5 U ICPMSW Chromium <0.001 <0.01 0.5 10 70 U ICPMSW Copper <0.001 <0.01 0.2 2 50 100 U ICPMSW Mercury <0.0001 <0.001 0.01 0.2 2 U ICPMSW Molybdenum 0.003 0.03 0.5 10 30 U ICPMSW Nickel <0.001 <0.01 0.5 10 50 U ICPMSW <t< th=""><th>Accre Meth</th><th></th><th>mg/l except ⁰⁰</th><th>mg/kg (dry weight)</th><th></th><th>mg/kg (dry weig</th><th>lht)</th></t<>	Accre Meth		mg/l except ⁰⁰	mg/kg (dry weight)		mg/kg (dry weig	lht)	
WSLM2 Conductivity (µs/cm) ⁰⁰ Calculated data file of 00 Acceluted Image: Conductivity (µs/cm) ⁰⁰ U ICPMSW Arsenic 0.002 0.02 0.5 2 25 U ICPWATVAR Barium <0.01	WSLN	M3 pH (pH units) ⁰⁰						
U ICPMSW Arsenic 0.002 0.02 0.5 2 25 U ICPWATVAR Barium <0.01	WSLN	M2 Conductivity (µs/cm) ⁰⁰						
U ICPWATVAR Barium <0.01 <0.1 20 100 30 U ICPMSW Cadmium <0.001	U ICPMS	SW Arsenic	0.002	0.02	0.5	2	25	
U ICPMSW Cadmium <0.0001 <0.001 0.04 1 5 U ICPMSW Chromium <0.001	U ICPWAT	TVAR Barium	<0.01	<0.1	20	100	300	
U ICPMSW Chromium <0.001 <0.01 0.5 10 70 U ICPMSW Copper <0.001 <0.01 2 50 10 70 U ICPMSW Copper <0.001 <0.01 2 50 10 70 U ICPMSW Mercury <0.001 <0.01 0.2 2 2 U ICPMSW Molybdenum 0.003 0.03 0.03 0.5 10 30 U ICPMSW Molybdenum 0.003 0.03 0.03 0.5 10 30 U ICPMSW Lead <0.001 <0.01 0.4 10 40 U ICPMSW Antimony <0.001 <0.01 0.5 10 50 U ICPMSW Selenium <0.001 <0.01 0.1 0.5 7 U ICPMSW Zinc 0.003 0.03 0.03 4 50 20 <	U ICPMS	SW Cadmium	<0.0001	<0.001	0.04	1	5	
U ICPMSW Copper <0.001 <0.01 2 50 10 U ICPMSW Mercury <0.0001	U ICPMS	SW Chromium	<0.001	<0.01	0.5	10	70	
U ICPMSW Mercury <0.0001 <0.001 0.01 0.2 2 U ICPMSW Molybdenum 0.003 0.03 0.5 10 30 U ICPMSW Molybdenum 0.003 0.03 0.5 10 30 U ICPMSW Nickel <0.001	U ICPMS	SW Copper	<0.001	<0.01	2	50	100	
U ICPMSW Molybdenum 0.003 0.03 0.5 10 30 U ICPMSW Nickel <0.001	U ICPMS	SW Mercury	<0.0001	<0.001	0.01	0.2	2	
U ICPMSW Nickel <0.001 <0.01 0.4 10 40 U ICPMSW Lead <0.001	U ICPMS	SW Molybdenum	0.003	0.03	0.5	10	30	
U ICPMSW Lead <0.001 <0.01 0.5 10 50 U ICPMSW Antimony <0.001	U ICPMS	SW Nickel	<0.001	<0.01	0.4	10	40	
U ICPMSW Antimony <0.001 <0.01 0.06 0.7 5 U ICPMSW Selenium <0.001	U ICPMS	SW Lead	<0.001	<0.01	0.5	10	50	
U ICPMSW Selenium <0.001 <0.01 0.5 7 U ICPMSW Zinc 0.003 0.03 4 50 200	U ICPMS	SW Antimony	<0.001	<0.01	0.06	0.7	5	
U ICPMSW Zinc 0.003 0.03 4 50 20	U ICPMS	SW Selenium	<0.001	<0.01	0.1	0.5	7	
	U ICPMS	SW Zinc	0.003	0.03	4	50	200	
U KONENS Chloride 64 640 800 15000 2500	U KONEI	NS Chloride	64	640	800	15000	25000	
U ISEF Fluoride 0.3 3 10 150 500	U ISEF	F Fluoride	0.3	3	10	150	500	
U ICPWATVAR Sulphate as SO4 28 280 1000 20000 500	U ICPWAT	TVAR Sulphate as SO4	28	280	1000	20000	50000	
N WSLM27 Total Dissolved Solids 240 2400 4000 60000 1000	N WSLM	M27 Total Dissolved Solids	240	2400	4000	4000 60000 100000		
SFAPI Phenol Index 1	SFAF	PI Phenol Index			1			
N WSLM13 Dissolved Organic Carbon 0.54 5.4 500 800 100	N WSLM	M13 Dissolved Organic Carbon	0.54	5.4	500	800	1000	

Client	Courseway Costoph Ltd				Leaching Data	Leaching Data		
Client	Causeway Geolech Llu				Weight of sample (kg)	0.095		
Contact					Moisture content @ 105°C (% of Wet Weight)	6.0		
Comaci	Nell Hayyan			Equivalent Weight based on drying at 105°C (kg) 0.0				
Site	Aveca Diver Sediment S	ampling			Volume of water required to carry out 10:1 stage (litres)	0.895		
Sile	Avoca River Sediment Sa	amping		Fraction of sample above 4 mm %	22.600			
Samp	le Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000		
		c19 1264	CL /1796254	22 Dec 17				
	0.00	510_1204	510_1204 CL/1700204 22-DeC-17					
Note: The >4mm fract	ion is crushed using a disc mill							

_	â			Landfill Was	te Acceptance Cri	teria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
U	WSLM59	Total Organic Carbon (% M/M)	0.14	3	5	6
Ν	LOI450	Loss on Ignition (%)	0.7			10
Ν	BTEXHSA	Sum of BTEX (mg/kg)	<0.055	6		
	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	<0.60	1		
Ν	TPHFIDUS	Mineral Oil (mg/kg)	<11§	500		
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.45	100		
Ν	PHSOIL	pH (pH units)	7.4 §		>6	
	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7			To be evaluated	To be evaluated

Š Š mg/l except °° mg/kg (dry weight) mg/kg (dry weight) WSLM3 pH (pH units) °° Calculated data not UKAS Accredited U ICPMSW Arsenic 0.002 0.02 0.5 2 25 U ICPWATVAR Barium <0.01 <0.1 20 100 300 U ICPMSW Cadmium <0.001 <0.01 0.04 1 5 U ICPMSW Cadmium <0.001 <0.01 0.04 1 5 U ICPMSW Cadmium <0.001 <0.01 0.04 1 5 U ICPMSW Chromium <0.001 <0.01 0.2 2 50 100 70 U ICPMSW Mercury <0.001 <0.01 2 50 100 70 U ICPMSW Mercury <0.001 <0.01 0.01 0.2 2 50 100 50 100	alues for
WSLM3 pH (pH units) 00 Calculated data not UKAS Accredited Image: Conductivity (µs/cm) Image: Conductity (µs/cm) Image: C	
WSLM2 Conductivity (µs/cm) ⁰⁰ Calculate data no over scheduled Image: Conductivity (µs/cm) ⁰⁰ U ICPMSW Arsenic 0.002 0.02 0.5 2 25 U ICPWATVAR Barium <0.01	
U ICPMSW Arsenic 0.002 0.02 0.5 2 25 U ICPWATVAR Barium <0.01	
U ICPWATVAR Barium <0.01 <0.1 20 100 300 U ICPMSW Cadmium <0.0001	25
U ICPMSW Cadmium <0.0001 <0.001 0.04 1 5 U ICPMSW Chromium <0.001	300
U ICPMSW Chromium <0.001 <0.01 0.5 10 70 U ICPMSW Copper <0.001	5
U ICPMSW Copper <0.001 <0.01 2 50 100 U ICPMSW Mercury <0.0001	70
U ICPMSW Mercury <0.0001 <0.001 0.01 0.2 2 U ICPMSW Molybdenum 0.003 0.03 0.5 10 30 U ICPMSW Nickel <0.001	00
U ICPMSW Molybdenum 0.003 0.03 0.5 10 30 U ICPMSW Nickel <0.001	2
U ICPMSW Nickel <0.001 <0.01 0.4 10 40 U ICPMSW Lead <0.001	30
U ICPMSW Lead <0.001 <0.01 0.5 10 50 U ICPMSW Antimony <0.001	40
U ICPMSW Antimony <0.001 <0.01 0.06 0.7 5 U ICPMSW Selenium <0.001	50
U ICPMSW Selenium <0.001 <0.01 0.1 0.5 7 U ICPMSW Zinc 0.003 0.03 4 50 200	5
U ICPMSW Zinc 0.003 0.03 4 50 200	7
	200
U KONENS Chloride 85 850 800 15000 2500	5000
U ISEF Fluoride 0.5 5 10 150 500	;00
U ICPWATVAR Sulphate as SO4 24 240 1000 20000 5000	0000
N WSLM27 Total Dissolved Solids 288 2880 4000 60000 1000	0000
SFAPI Phenol Index 1	
N WSLM13 Dissolved Organic Carbon 0.65 6.5 500 800 100	000

Client	Caugaway Caataah Ltd				Leaching Data		
Client	Causeway Geolech Llu				Weight of sample (kg)	0.099	
Contact					Moisture content @ 105°C (% of Wet Weight)		
Comaci	Nell Hayyan			Equivalent Weight based on drying at 105°C (kg) 0.09			
Site	Avena River Sediment S	ompling		Volume of water required to carry out 10:1 stage (litres)			
Sile	Avoca River Sediment Sa	amping		Fraction of sample above 4 mm %	7.600		
Sample Description		Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000	
BH06 1 00		019 1064	CL /1796255	22 Dec 17			
		\$10_1204	CL/1700200	22-Dec-17			

Note:	ote: The >4mm fraction is crushed using a disc mill									
_				Landfill Was	te Acceptance Cri	teria Limit Values				
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill				
U	WSLM59	Total Organic Carbon (% M/M)	0.13	3	5	6				
Ν	LOI450	Loss on Ignition (%)	0.7			10				
Ν	BTEXHSA	Sum of BTEX (mg/kg)	<0.055	6						
	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	<0.60	1						
Ν	TPHFIDUS	Mineral Oil (mg/kg)	<11§	500						
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.56	100						
Ν	PHSOIL	pH (pH units)	7.4 §		>6					
	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7			To be evaluated	To be evaluated				

5g 5g mg/l except ^{oo} mg/kg (dry weight) mg/kg (dry weight) WSLM3 pH (pH units) ^{oo} Calculated data not UKAS Accredited Calculated data not UKAS Accredited Calculated data not UKAS Accredited U ICPMSW Arsenic <0.001 <0.01 0.5 2 25 U ICPMSW Arsenic <0.001 <0.01 0.04 1 5 U ICPMSW Cadmium <0.001 <0.01 0.2 2 0 100 U ICPMSW Mercury <0.001 <0.01 0.01 0.2 2 0 100 U ICPMSW Molybdenum 0.003 0.03 0.5 10 30 0 0 <th>editation</th> <th>od Code</th> <th>Leachate Analysis</th> <th>10:1 Single Stage Leachate</th> <th>Calculated cumulative amount leached @ 10:1</th> <th colspan="2">Landfill Waste Acceptance Criteria Limit BSEN 12457/2 @ L/S 10 litre kg</th> <th>ria Limit Values for) litre kg-1</th>	editation	od Code	Leachate Analysis	10:1 Single Stage Leachate	Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Limit BSEN 12457/2 @ L/S 10 litre kg		ria Limit Values for) litre kg-1
WSLM3 pH (pH units) Calculated data not UKAS Accredited WSLM2 Conductivity (µs/cm) Calculated data not UKAS Accredited U ICPMSW Arsenic <0.001	Accre	Meth		mg/l except ⁰⁰	mg/kg (dry weight)		mg/kg (dry weight)	
WSLM2 Conductivity (µs/cm) °° Conduct value v		WSLM3	pH (pH units) ºº		Calculated data not LIKAS Accredited			
U ICPMSW Arsenic <0.01 <0.01 0.5 2 25 U ICPWATVAR Barium <0.01		WSLM2	Conductivity (µs/cm) ⁰⁰		Calculated data not OKAS Accredited			
U ICPWATVAR Barium <0.01 <0.1 20 100 300 U ICPMSW Cadmium <0.0001	U	ICPMSW	Arsenic	<0.001	<0.01	0.5	2	25
U ICPMSW Cadmium <0.0001 <0.001 0.04 1 5 U ICPMSW Chromium <0.001	U	ICPWATVAR	Barium	<0.01	<0.1	20	100	300
U ICPMSW Chromium <0.001 <0.01 0.5 10 70 U ICPMSW Copper <0.001	U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5
U ICPMSW Copper <0.001 <0.01 2 50 100 U ICPMSW Mercury <0.0001	U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70
U ICPMSW Mercury <0.0001 <0.001 0.01 0.2 2 U ICPMSW Molybdenum 0.003 0.03 0.5 10 30 U ICPMSW Nickel <0.001	U	ICPMSW	Copper	<0.001	<0.01	2	50	100
U ICPMSW Molybdenum 0.003 0.03 0.5 10 30 U ICPMSW Nickel <0.001	U	ICPMSW	Mercury	<0.0001	<0.001	0.01	0.2	2
U ICPMSW Nickel <0.001 <0.01 0.4 10 40 U ICPMSW Lead <0.001	U	ICPMSW	Molybdenum	0.003	0.03	0.5	10	30
U ICPMSW Lead <0.001 <0.01 0.5 10 50 U ICPMSW Antimony <0.001 <0.01 0.06 0.7 5 U ICPMSW Selenium <0.001 <0.01 0.1 0.5 7 U ICPMSW Selenium <0.001 <0.01 0.1 0.5 7 U ICPMSW Zinc 0.003 0.03 4 50 200 U KONENS Chloride 161 1610 800 15000 25000 U ISEF Fluoride 0.5 5 10 150 500 U ICPWATVAR Sulphate as SO4 28 280 1000 20000 50000 N WSLM27 Total Dissolved Solids 506 5060 4000 60000 100000 SFAPI Phenol Index 1 1 1 1 1 N WSLM13 Dissolved Organic Carbon	U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40
U ICPMSW Antimony <0.001 <0.01 0.06 0.7 5 U ICPMSW Selenium <0.001	U	ICPMSW	Lead	<0.001	<0.01	0.5	10	50
U ICPMSW Selenium <0.001 <0.01 0.1 0.5 7 U ICPMSW Zinc 0.003 0.03 4 50 200 U KONENS Chloride 161 1610 800 15000 25000 U ISEF Fluoride 0.5 5 10 150 500 U ICPWATVAR Sulphate as SO4 28 280 1000 20000 50000 N WSLM27 Total Dissolved Solids 506 5060 4000 60000 100000 SFAPI Phenol Index 1 1 1 1000 1000 N WSLM13 Dissolved Organic Carbon 0.54 5.4 500 800 1000	U	ICPMSW	Antimony	<0.001	<0.01	0.06	0.7	5
U ICPMSW Zinc 0.003 0.03 4 50 200 U KONENS Chloride 161 1610 800 15000 25000 U ISEF Fluoride 0.5 5 10 150 500 U ISEF Fluoride 0.5 5 10 150 500 U ICPWATVAR Sulphate as SO4 28 280 1000 20000 50000 N WSLM27 Total Dissolved Solids 506 5060 4000 60000 100000 SFAPI Phenol Index 1 1 1 1000 1000 N WSLM13 Dissolved Organic Carbon 0.54 5.4 500 800 1000	U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7
U KONENS Chloride 161 1610 800 15000 25000 U ISEF Fluoride 0.5 5 10 150 500 U ICPWATVAR Sulphate as SO4 28 280 1000 20000 50000 N WSLM27 Total Dissolved Solids 506 5060 4000 60000 100000 SFAPI Phenol Index 1 1 1000 1000 1000 N WSLM13 Dissolved Organic Carbon 0.54 5.4 500 800 1000	U	ICPMSW	Zinc	0.003	0.03	4	50	200
U ISEF Fluoride 0.5 5 10 150 500 U ICPWATVAR Sulphate as SO4 28 280 1000 20000 50000 N WSLM27 Total Dissolved Solids 506 5060 4000 60000 100000 SFAPI Phenol Index 1 1 1000 100000 N WSLM13 Dissolved Organic Carbon 0.54 5.4 500 800 1000	U	KONENS	Chloride	161	1610	800	15000	25000
U ICPWATVAR Sulphate as SO4 28 280 1000 20000 50000 N WSLM27 Total Dissolved Solids 506 5060 4000 60000 100000 SFAPI Phenol Index 1 1 1000 100000 N WSLM13 Dissolved Organic Carbon 0.54 5.4 500 800 10000	U	ISEF	Fluoride	0.5	5	10	150	500
N WSLM27 Total Dissolved Solids 506 5060 4000 60000 100000 SFAPI Phenol Index 1 1 1 100000 N WSLM13 Dissolved Organic Carbon 0.54 5.4 500 800 10000	U	ICPWATVAR	Sulphate as SO4	28	280	1000	20000	50000
SFAPI Phenol Index 1 1 N WSLM13 Dissolved Organic Carbon 0.54 5.4 500 800 1000	Ν	WSLM27	Total Dissolved Solids	506	5060	4000	60000	100000
N WSLM13 Dissolved Organic Carbon 0.54 5.4 500 800 1000		SFAPI	Phenol Index			1		
	Ν	WSLM13	Dissolved Organic Carbon	0.54	5.4	500	800	1000

Client	Courseway Costoch I td	auseway Geotech I to			Leaching Data		
Client	Causeway Geolech Llu				Weight of sample (kg)	0.093	
Contact					Moisture content @ 105°C (% of Wet Weight)		
Comaci	Nell Hayyan			Equivalent Weight based on drying at 105°C (kg) 0.09			
Sito	Avena River Sediment S	ompling		Volume of water required to carry out 10:1 stage (litres)	0.897		
Sile	Avoca River Sediment Sa	amping		Fraction of sample above 4 mm %	12.200		
Sample Description		Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000	
BL 100 0.00		019 1264	CL /1796256	22 Dec 17			
BH06 2.00		510_1204	GL/1700200	22-Dec-17			

Note:	ote: The >4mm fraction is crushed using a disc mill									
_				Landfill Was	te Acceptance Cri	teria Limit Values				
Accreditatior	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill				
U	WSLM59	Total Organic Carbon (% M/M)	0.15	3	5	6				
Ν	LOI450	Loss on Ignition (%)	0.7			10				
Ν	BTEXHSA	Sum of BTEX (mg/kg)	<0.055	6						
	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	<0.60	1						
Ν	TPHFIDUS	Mineral Oil (mg/kg)	15§	500						
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.49	100						
Ν	PHSOIL	pH (pH units)	7.5 §		>6					
	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7			To be evaluated	To be evaluated				

by <th>editation</th> <th>od Code</th> <th>Leachate Analysis</th> <th>10:1 Single Stage Leachate</th> <th>Calculated cumulative amount leached @ 10:1</th> <th colspan="2" rowspan="2">Landfill Waste Acceptance Criteria Limit Values BSEN 12457/2 @ L/S 10 litre kg-1 mg/kg (dry weight)</th> <th>ria Limit Values for) litre kg-1</th>	editation	od Code	Leachate Analysis	10:1 Single Stage Leachate	Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Limit Values BSEN 12457/2 @ L/S 10 litre kg-1 mg/kg (dry weight)		ria Limit Values for) litre kg-1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Accre	Meth		mg/l except ⁰⁰	mg/kg (dry weight)			ht)
WSLM2 Conductivity (µs/cm) ⁰⁰ Conduction of the one		WSLM3	pH (pH units) ^{oo}		Calculated data pot LIKAS Accredited			
U ICPMSW Arsenic <0.01 <0.01 0.5 2 25 U ICPWATVAR Barium <0.01		WSLM2	Conductivity (µs/cm) ⁰⁰		Calculated data not OKAS Accredited			
U ICPWATVAR Barium <0.01 <0.1 20 100 300 U ICPMSW Cadmium <0.001	U	ICPMSW	Arsenic	<0.001	<0.01	0.5	2	25
U ICPMSW Cadmium <0.001 <0.001 0.04 1 5 U ICPMSW Chromium <0.001	U	ICPWATVAR	Barium	<0.01	<0.1	20	100	300
U ICPMSW Chromium <0.001 <0.01 0.5 10 70 U ICPMSW Copper <0.001	U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5
U ICPMSW Copper <0.001 <0.01 2 50 100 U ICPMSW Mercury <0.0001	U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70
U ICPMSW Mercury <0.0001 <0.01 0.2 2 U ICPMSW Molybdenum 0.004 0.04 0.5 10 30 U ICPMSW Nickel <0.001	U	ICPMSW	Copper	<0.001	<0.01	2	50	100
U ICPMSW Molybdenum 0.004 0.04 0.5 10 30 U ICPMSW Nickel <0.001	U	ICPMSW	Mercury	<0.0001	<0.001	0.01	0.2	2
U ICPMSW Nickel <0.001 <0.01 0.4 10 40 U ICPMSW Lead <0.001	U	ICPMSW	Molybdenum	0.004	0.04	0.5 10 30		30
U ICPMSW Lead <0.001 <0.01 0.5 10 50 U ICPMSW Antimony <0.001	U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40
U ICPMSW Antimony <0.001 <0.01 0.06 0.7 5 U ICPMSW Selenium <0.001	U	ICPMSW	Lead	<0.001	<0.01	0.5	10	50
U ICPMSW Selenium <0.001 <0.01 0.5 7 U ICPMSW Zinc 0.004 0.04 4 50 200 U KONENS Chloride 117 1170 800 15000 25000 U ISEF Fluoride 0.5 5 10 150 5000 U ICPWATVAR Sulphate as SO4 20 200 1000 20000 50000 N WSLM27 Total Dissolved Solids 358 3580 4000 60000 100000 N WSLM13 Dissolved Organic Carbon 0.52 5.2 500 800 1000	U	ICPMSW	Antimony	<0.001	<0.01	0.06	0.7	5
U ICPMSW Zinc 0.004 0.04 4 50 200 U KONENS Chloride 117 1170 800 15000 25000 U ISEF Fluoride 0.5 5 10 150 500 U ICPWATVAR Sulphate as SO4 20 200 1000 20000 50000 N WSLM27 Total Dissolved Solids 358 3580 4000 60000 100000 SFAPI Phenol Index 0.52 5.2 500 800 1000	U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7
U KONENS Chloride 117 1170 800 1500 25000 U ISEF Fluoride 0.5 5 10 150 500 U ICPWATVAR Sulphate as SO4 20 200 1000 20000 50000 N WSLM27 Total Dissolved Solids 358 3580 4000 60000 100000 SFAPI Phenol Index 1	U	ICPMSW	Zinc	0.004	0.04	4	50	200
U ISEF Fluoride 0.5 10 150 500 U ICPWATVAR Sulphate as SO4 20 200 1000 20000 50000 N WSLM27 Total Dissolved Solids 3580 3580 4000 60000 100000 SFAPI Phenol Index 1 1 1 100000 N WSLM13 Dissolved Organic Carbon 0.52 5.2 500 800 10000	U	KONENS	Chloride	117	1170	800	15000	25000
U ICPWATVAR Sulphate as SO4 20 2000 1000 20000 50000 N WSLM27 Total Dissolved Solids 358 3580 4000 60000 100000 SFAPI Phenol Index 1 1 1 10000 N WSLM13 Dissolved Organic Carbon 0.52 5.2 500 800 10000	U	ISEF	Fluoride	0.5	5	10	150	500
N WSLM27 Total Dissolved Solids 358 3580 4000 60000 100000 SFAPI Phenol Index 1 1 1 1 1 100000 100000 100000 100000 100000 1000000 100000 100000 100000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 10000000 10000000 10000000 10000000 100000000 10000000000000000000000 1000000000000000000000000000000000000	U	ICPWATVAR	Sulphate as SO4	20	200	1000	20000	50000
SFAPI Phenol Index 1 N WSLM13 Dissolved Organic Carbon 0.52 5.2 500 800 1000	Ν	WSLM27	Total Dissolved Solids	358	3580	4000	60000	100000
N WSLM13 Dissolved Organic Carbon 0.52 5.2 500 800 1000		SFAPI	Phenol Index			1		
	Ν	WSLM13	Dissolved Organic Carbon	0.52	5.2	500	800	1000

Client	Caugaway Caataah Ltd				Leaching Data		
Client	Causeway Geolech Llu				Weight of sample (kg)	0.098	
Contact				Moisture content @ 105°C (% of Wet Weight)	9.3		
Comaci	Nell Hayyan			Equivalent Weight based on drying at 105°C (kg) 0.0			
Site	Avena River Sediment S	ompling			Volume of water required to carry out 10:1 stage (litres)	0.892	
Sile	Avoca River Sediment Sa	ampling		Fraction of sample above 4 mm %	25.000		
Samp	le Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000	
		c18 1264	CL /1786257	22-Doc-17			
L	5100 5.00	510_1204	5_1204 CL/1700257 22-DeC-17				
Note: The >4mm fract	ion is crushed using a disc mill						

_				Landfill Was	te Acceptance Cri	teria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
U	WSLM59	Total Organic Carbon (% M/M)	0.12	3	5	6
Ν	LOI450	Loss on Ignition (%)	0.5			10
Ν	BTEXHSA	Sum of BTEX (mg/kg)	<0.055	6		
	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	<0.60	1		
Ν	TPHFIDUS	Mineral Oil (mg/kg)	39§	500		
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.50	100		
Ν	PHSOIL	pH (pH units)	7.6 §		>6	
	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7			To be evaluated	To be evaluated

by by mg/l except 00 mg/kg (dry weight) mg/kg (dry weight) WSLM3 pH (pH units) 00 Calculated data not UKAS Accredited Calculated data not UKAS Accredited Calculated data not UKAS Accredited U ICPMSW Arsenic <0.001 <0.01 0.5 2 25 U ICPMATVAR Barium <0.01 <0.1 20 100 300 U ICPMSW Cadmium <0.001 <0.01 0.5 2 25 U ICPMSW Cadmium <0.01 <0.1 20 100 300 U ICPMSW Cadmium <0.001 <0.01 0.2 25 0 100 U ICPMSW Chromium <0.001 <0.01 0.2 250 100 70 U ICPMSW Mercury <0.001 <0.01 0.2 2 0 100 100 2 100 30 U ICPMSW Mercury <0.001 <0.01 0.1<	editation	od Code	Leachate Analysis	10:1 Single Stage Leachate	Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Limit Valu BSEN 12457/2 @ L/S 10 litre kg-1		ria Limit Values for 0 litre kg-1
WSLM3 pH (pH units) Calculated data not UKAS Accredited Calculated data not UKAS Accredited U ICPMSW Arsenic <0.001 <0.01 0.5 2 25 U ICPWATVAR Barium <0.01 <0.1 20 100 300 U ICPMSW Cadmium <0.001 <0.01 0.04 1 5 U ICPMSW Cadmium <0.001 <0.001 0.04 1 5 U ICPMSW Cadmium <0.001 <0.001 0.04 1 5 U ICPMSW Cadmium <0.001 <0.01 0.2 2 50 100 U ICPMSW Mercury <0.001 <0.01 0.2 2 2 10 10 10 2 50 100 30 30 30 10 30 10 40 10 40 10 40 10 40 10 40 10 10 40 1	Accre	Meth		mg/l except ⁰⁰	mg/kg (dry weight)		mg/kg (dry weight)	
WSLM2 Conductivity (µs/cm) °° Calculate data file OK/S Acceleded U ICPMSW Arsenic <0.001		WSLM3	pH (pH units) ⁰⁰		Calculated data not LIKAS Accredited			
U ICPMSW Arsenic <0.001 <0.01 0.5 2 25 U ICPWATVAR Barium <0.01		WSLM2	Conductivity (µs/cm) ⁰⁰		Calculated data not OKAS Accredited			
U ICPWATVAR Barium <0.01 <0.1 20 100 300 U ICPMSW Cadmium <0.001	U	ICPMSW	Arsenic	<0.001	<0.01	0.5	2	25
U ICPMSW Cadmium <0.001 0.04 1 5 U ICPMSW Chromium <0.001	U	ICPWATVAR	Barium	<0.01	<0.1	20	100	300
U ICPMSW Chromium <0.001 <0.01 0.5 10 70 U ICPMSW Copper <0.001	U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5
U ICPMSW Copper <0.001 <0.01 2 50 100 U ICPMSW Mercury <0.0001	U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70
U ICPMSW Mercury <0.0001 0.01 0.2 2 U ICPMSW Molybdenum 0.005 0.05 0.5 10 30 U ICPMSW Nickel <0.001	U	ICPMSW	Copper	<0.001	<0.01	2	50	100
U ICPMSW Molybdenum 0.005 0.05 0.5 10 30 U ICPMSW Nickel <0.001	U	ICPMSW	Mercury	<0.0001	<0.001	0.01	0.2	2
U ICPMSW Nickel <0.001 <0.01 0.4 10 40 U ICPMSW Lead <0.001	U	ICPMSW	Molybdenum	0.005	0.05	0.5	10	30
U ICPMSW Lead <0.001 <0.01 0.5 10 50 U ICPMSW Antimony <0.001	U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40
U ICPMSW Antimony <0.001 <0.01 0.06 0.7 5 U ICPMSW Selenium <0.001	U	ICPMSW	Lead	<0.001	<0.01	0.5	10	50
U ICPMSW Selenium <0.001 <0.01 0.1 0.5 7 U ICPMSW Zinc 0.003 0.03 4 50 200 U KONENS Chloride 146 1460 800 15000 25000 U ISEF Fluoride 0.4 4 10 150 500 U ICPWATVAR Sulphate as SO4 30 300 1000 20000 50000	U	ICPMSW	Antimony	<0.001	<0.01	0.06	0.7	5
U ICPMSW Zinc 0.003 0.03 4 50 200 U KONENS Chloride 146 1460 800 15000 25000 U ISEF Fluoride 0.4 4 10 150 500 U ICPWATVAR Sulphate as SO4 30 300 1000 20000 50000	U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7
U KONENS Chloride 146 1460 800 15000 25000 U ISEF Fluoride 0.4 4 10 150 500 U ICPWATVAR Sulphate as SO4 30 300 1000 20000 50000	U	ICPMSW	Zinc	0.003	0.03	4	50	200
U ISEF Fluoride 0.4 4 10 150 500 U ICPWATVAR Sulphate as SO4 30 300 1000 20000 50000	U	KONENS	Chloride	146	1460	800	15000	25000
U ICPWATVAR Sulphate as SO4 30 300 1000 20000 50000	U	ISEF	Fluoride	0.4	4	10	150	500
	U	ICPWATVAR	Sulphate as SO4	30	300	1000	20000	50000
N WSLM27 Total Dissolved Solids 465 4650 4000 60000 100000	Ν	WSLM27	Total Dissolved Solids	465	4650	4000	60000	100000
SFAPI Phenol Index 1		SFAPI	Phenol Index			1		
N WSLM13 Dissolved Organic Carbon 0.4 4 500 800 1000	Ν	WSLM13	Dissolved Organic Carbon	0.4	4	500	800	1000

Client	Causaway Caataah Ltd			Leaching Data			
Client	Causeway Geolech Llu				Weight of sample (kg)		
Contact					Moisture content @ 105°C (% of Wet Weight)		
Contact	Nell Hayyan			Equivalent Weight based on drying at 105°C (kg) 0.090			
Sito	Avena River Sediment S	ompling		Volume of water required to carry out 10:1 stage (litres)			
Sile	Avoca River Sediment Sa	amping		Fraction of sample above 4 mm %	41.000		
Sample Description		Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000	
BH07 1 00		019 1264	CL /1796259	00 D + 17			
BH07 1.00		\$16_1264 CL/1766256		22-Dec-17			

Note:	Note: The >4mm fraction is crushed using a disc mill									
_				Landfill Waste Acceptance Criteria Limit Values						
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)		Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill				
U	WSLM59	Total Organic Carbon (% M/M)	0.12	3	5	6				
Ν	LOI450	Loss on Ignition (%)	0.5			10				
Ν	BTEXHSA	Sum of BTEX (mg/kg)	<0.055	6						
	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	<0.60	1						
Ν	TPHFIDUS	Mineral Oil (mg/kg)	<11§	500						
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.44	100						
Ν	PHSOIL	pH (pH units)	7.6 §		>6					
	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7			To be evaluated	To be evaluated				

editation	od Code	Leachate Analysis	10:1 Single Stage Leachate	Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/2 @ L/S 10 litre kg-1		
Accre	Meth		mg/l except ⁰⁰	mg/kg (dry weight)		mg/kg (dry weig	ht)
	WSLM3	pH (pH units) ⁰⁰		Calculated data not LIKAS Accredited			
	WSLM2	Conductivity (µs/cm) ⁰⁰					
U	ICPMSW	Arsenic	0.006	0.06	0.5	2	25
U	ICPWATVAR	Barium	<0.01	<0.1	20	100	300
U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5
U	ICPMSW	Chromium	0.001	0.01	0.5	10	70
U	ICPMSW	Copper	0.008	0.08	2	50	100
U	ICPMSW	Mercury	<0.0001	<0.001	0.01	0.01 0.2	
U	ICPMSW	Molybdenum	0.001	0.01	0.5	10	30
U	ICPMSW	Nickel	0.001	0.01	0.4	10	40
U	ICPMSW	Lead	0.008	0.08	0.5	10	50
U	ICPMSW	Antimony	<0.001	<0.01	0.06	0.7	5
U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7
U	ICPMSW	Zinc	0.029	0.29	4	50	200
U	KONENS	Chloride	64	640	800	15000	25000
U	ISEF	Fluoride	0.4	4	10	150	500
U	ICPWATVAR	Sulphate as SO4	14	140	1000	20000	50000
Ν	WSLM27	Total Dissolved Solids	212	2120 4000 60000 1		100000	
	SFAPI	Phenol Index			1		
Ν	WSLM13	Dissolved Organic Carbon	1.3	13	500	800	1000
Templa	ate Ver 1			Landfill W	aste Acceptance Cri	teria limit values corre	ect as of 11th March 2009

Client	Caugaway Castach Ltd			Leaching Data			
Client	Causeway Geolech Llu				Weight of sample (kg)		
Contact					Moisture content @ 105°C (% of Wet Weight)		
Comaci	Neil Hayyan			Equivalent Weight based on drying at 105°C (kg) 0.090			
Site	Avena River Sediment S	ompling			Volume of water required to carry out 10:1 stage (litres)		
Sile	Avoca River Sediment Sa	amping		Fraction of sample above 4 mm %	42.800		
Sample Description		Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000	
BL 107 0.00		019 1064	CL /1796250	22-Dec-17			
BH07 2.00		\$10_1204	CL/1700259				

Note:	lote: The >4mm fraction is crushed using a disc mill									
				Landfill Waste Acceptance Criteria Limit Values						
Accreditatior	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill				
U	WSLM59	Total Organic Carbon (% M/M)	0.11	3	5	6				
Ν	LOI450	Loss on Ignition (%)	0.5			10				
Ν	BTEXHSA	Sum of BTEX (mg/kg)	<0.055	6						
	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	<0.60	1						
Ν	TPHFIDUS	Mineral Oil (mg/kg)	<11§	500						
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.49	100						
Ν	PHSOIL	pH (pH units)	7.6 §		>6					
	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7			To be evaluated	To be evaluated				

by <th>editation</th> <th>od Code</th> <th>Leachate Analysis</th> <th colspan="2">10:1 Single Stage Leachate Calculated cumulative amount leached @ 10:1</th> <th>Landfill Waste BSEN</th> <th colspan="3">Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/2 @ L/S 10 litre kg-1</th>	editation	od Code	Leachate Analysis	10:1 Single Stage Leachate Calculated cumulative amount leached @ 10:1		Landfill Waste BSEN	Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/2 @ L/S 10 litre kg-1		
$ \begin{array}{ c c c c c c c } \hline WSLM3 & pH (pH units) \overset{00}{} & \hline \\ WSLM2 & Conductivity (µs/cm) \overset{00}{} & \hline \\ WSLM2 & Conductivity (µs/cm) \overset{00}{} & \hline \\ U & ICPMSW & Arsenic & 0.009 & 0.09 & 0.5 & 2 & 25 \\ \hline \\ U & ICPWATVAR & Barium & <0.01 & <0.1 & 20 & 100 & 300 \\ U & ICPMSW & Cadmium & <0.001 & <0.001 & 0.04 & 1 & 5 \\ U & ICPMSW & Cadmium & <0.002 & 0.02 & 0.5 & 10 & 70 \\ U & ICPMSW & Copper & 0.013 & 0.13 & 2 & 50 & 100 \\ U & ICPMSW & Mercury & <0.001 & <0.001 & 0.01 & 0.2 & 2 \\ U & ICPMSW & Mercury & <0.001 & 0.01 & 0.01 & 0.2 & 2 \\ U & ICPMSW & Molybdenum & 0.001 & 0.01 & 0.01 & 0.5 & 10 & 30 \\ U & ICPMSW & Nickel & 0.002 & 0.02 & 0.4 & 10 & 40 \\ U & ICPMSW & Nickel & 0.002 & 0.02 & 0.4 & 10 & 40 \\ U & ICPMSW & Nickel & 0.001 & <0.01 & 0.5 & 10 & 50 \\ U & ICPMSW & Nickel & 0.001 & <0.01 & 0.5 & 10 & 50 \\ U & ICPMSW & Nickel & 0.001 & <0.01 & 0.5 & 10 & 50 \\ U & ICPMSW & Nickel & 0.002 & 0.02 & 0.4 & 10 & 40 \\ U & ICPMSW & Nickel & 0.001 & <0.01 & 0.5 & 10 & 50 \\ U & ICPMSW & Selenium & <0.001 & <0.01 & 0.06 & 0.7 & 5 \\ U & ICPMSW & Selenium & <0.001 & <0.01 & 0.1 & 0.5 & 7 \\ U & ICPMSW & Selenium & <0.001 & <0.01 & 0.1 & 0.5 & 7 \\ U & ICPMSW & Selenium & <0.001 & <0.01 & 0.1 & 0.5 & 7 \\ U & ICPMSW & Selenium & <0.001 & 0.049 & 0.49 & 4 & 50 & 200 \\ U & KONENS & Chloride & 34 & 340 & 800 & 15000 & 25000 \\ U & ISEF & Fluoride & 0.4 & 4 & 10 & 150 & 500 \\ U & ICPWATVAR & Sulphate as SO4 & 9 & 90 & 1000 & 20000 & 50000 \\ N & WSLM27 & Total Dissolved Organic Carbon & 1.5 & 15 & 500 & 800 & 1000 \\ \end{array}$	Accre	Meth		mg/l except ⁰⁰	mg/kg (dry weight)		mg/kg (dry weig	ht)	
WSLM2 Conductivity (µs/cm) ⁰⁰ Conductivation of the one of th		WSLM3	pH (pH units) ^{oo}		Calculated data pot LIKAS Accredited				
U ICPMSW Arsenic 0.009 0.09 0.5 2 25 U ICPWATVAR Barium <0.01		WSLM2	Conductivity (µs/cm) ⁰⁰		Calculated data not OKAS Accredited				
U ICPWATVAR Barium <0.01 <0.1 20 100 300 U ICPMSW Cadmium <0.001	U	ICPMSW	Arsenic	0.009	0.09	0.5	2	25	
U ICPMSW Cadmium <0.001 <0.001 0.04 1 5 U ICPMSW Chromium 0.002 0.02 0.5 10 70 U ICPMSW Copper 0.013 0.13 2 50 100 U ICPMSW Mercury <0.001	U	ICPWATVAR	Barium	<0.01	<0.1	20	100	300	
U ICPMSW Chromium 0.002 0.02 0.5 10 70 U ICPMSW Copper 0.013 0.13 2 50 100 U ICPMSW Mercury <0.0011	U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5	
U ICPMSW Copper 0.013 0.13 2 50 100 U ICPMSW Mercury <0.0001	U	ICPMSW	Chromium	0.002	0.02	0.5	10	70	
U ICPMSW Mercury <0.0001 <0.01 0.2 2 U ICPMSW Molybdenum 0.001 0.01 0.5 10 30 U ICPMSW Nickel 0.002 0.02 0.4 10 40 U ICPMSW Lead 0.021 0.21 0.5 10 50 U ICPMSW Antimony <0.021	U	ICPMSW	Copper	0.013	0.13	2	50	100	
U ICPMSW Molybdenum 0.001 0.01 0.5 10 30 U ICPMSW Nickel 0.002 0.02 0.4 10 40 U ICPMSW Lead 0.021 0.21 0.5 10 50 U ICPMSW Antimony <0.021	U	ICPMSW	Mercury	<0.0001	<0.001	0.01	0.2	2	
U ICPMSW Nickel 0.002 0.02 0.4 10 40 U ICPMSW Lead 0.021 0.21 0.5 10 50 U ICPMSW Antimony <0.001	U	ICPMSW	Molybdenum	0.001	0.01	0.5	10	30	
U ICPMSW Lead 0.021 0.21 0.5 10 50 U ICPMSW Antimony <0.001	U	ICPMSW	Nickel	0.002	0.02	0.4	10	40	
U ICPMSW Antimony <0.001 <0.01 0.06 0.7 5 U ICPMSW Selenium <0.001	U	ICPMSW	Lead	0.021	0.21	0.5	10	50	
U ICPMSW Selenium <0.001 <0.01 0.5 7 U ICPMSW Zinc 0.049 0.49 4 50 200 U KONENS Chloride 34 340 800 15000 25000 U ISEF Fluoride 0.4 4 10 150 500 U ICPWATVAR Sulphate as SO4 9 90 1000 20000 50000 N WSLM27 Total Dissolved Solids 123 1230 4000 60000 100000 N WSLM13 Dissolved Organic Carbon 1.5 15 500 800 1000	U	ICPMSW	Antimony	<0.001	<0.01	0.06	0.7	5	
U ICPMSW Zinc 0.049 0.49 4 50 200 U KONENS Chloride 34 340 800 15000 25000 U ISEF Fluoride 0.4 4 10 150 500 U ISEF Fluoride 0.4 4 100 150 500 U ICPWATVAR Sulphate as SO4 9 90 1000 20000 50000 N WSLM27 Total Dissolved Solids 123 1230 4000 60000 100000 SFAPI Phenol Index 1.5 15 500 800 1000	U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7	
U KONENS Chloride 34 340 800 1500 25000 U ISEF Fluoride 0.4 4 10 150 500 U ICPWATVAR Sulphate as SO4 9 90 1000 20000 50000 N WSLM27 Total Dissolved Solids 123 1230 4000 60000 100000 SFAPI Phenol Index 1 1 1000 1000 N WSLM13 Dissolved Organic Carbon 1.5 15 500 800 1000	U	ICPMSW	Zinc	0.049	0.49	4	50	200	
U ISEF Fluoride 0.4 4 10 150 500 U ICPWATVAR Sulphate as SO4 9 90 1000 20000 50000 N WSLM27 Total Dissolved Solids 123 1230 4000 60000 100000 SFAPI Phenol Index 1 1 1 1 100000 N WSLM13 Dissolved Organic Carbon 1.5 15 500 800 100000	U	KONENS	Chloride	34	340	800	15000	25000	
U ICPWATVAR Sulphate as SO4 9 90 1000 20000 50000 N WSLM27 Total Dissolved Solids 123 1230 4000 60000 100000 SFAPI Phenol Index 1 1 1 1 1 N WSLM13 Dissolved Organic Carbon 1.5 15 500 800 1000	U	ISEF	Fluoride	0.4	4	10	150	500	
N WSLM27 Total Dissolved Solids 123 4000 60000 100000 SFAPI Phenol Index 1 1 1 1 1 1 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 10000000 10000000 10000000 1000000000 1000000000000 1000000000000000000000000000000000000	U	ICPWATVAR	Sulphate as SO4	9	90	1000	20000	50000	
SFAPI Phenol Index 1 N WSLM13 Dissolved Organic Carbon 1.5 15 500 800 1000	Ν	WSLM27	Total Dissolved Solids	123	1230	4000	4000 60000 100000		
N WSLM13 Dissolved Organic Carbon 1.5 15 500 800 1000		SFAPI	Phenol Index			1			
	Ν	WSLM13	Dissolved Organic Carbon	1.5	15	500	800	1000	

Client	Causaway Caataah Ltd			Leaching Data			
Client	Causeway Geolech Llu				Weight of sample (kg)		
Contact					Moisture content @ 105°C (% of Wet Weight)		
Comaci	Nell Hayyan			Equivalent Weight based on drying at 105°C (kg) 0.09			
Sito	Avena River Sediment S	ompling			Volume of water required to carry out 10:1 stage (litres)		
Sile	Avoca River Sediment Sa	amping		Fraction of sample above 4 mm %	22.200		
Sample Description		Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000	
BH09.1.00		c19 1264	CL /1796260	00 D			
BH08 1.00		S10_1204 CL/1780200		22-Dec-17			

Note:	lote: The >4mm fraction is crushed using a disc mill									
-				Landfill Waste Acceptance Criteria Limit Values						
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill				
U	WSLM59	Total Organic Carbon (% M/M)	0.12	3	5	6				
Ν	LOI450	Loss on Ignition (%)	0.5			10				
Ν	BTEXHSA	Sum of BTEX (mg/kg)	< 0.05	6						
	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	<0.60	1						
Ν	TPHFIDUS	Mineral Oil (mg/kg)	<10§	500						
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.40	100						
Ν	PHSOIL	pH (pH units)	7.3 §		>6					
	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7			To be evaluated	To be evaluated				

by by mg/l except 00 mg/kg (dry weight) mg/kg (dry weight) WSLM3 pH (pH units) 00 Calculated data not UKAS Accredited Calculated data not UKAS Accredited Calculated data not UKAS Accredited U ICPMSW Arsenic 0.003 0.03 0.5 2 25 U ICPMSW Arsenic 0.001 <0.1 20 100 300 U ICPMSW Cadmium <0.011 <0.1 20 100 300 U ICPMSW Cadmium <0.001 <0.01 0.04 1 5 U ICPMSW Cadmium <0.001 <0.01 0.2 2 50 100 U ICPMSW Copper 0.002 0.02 2 50 100 00 U ICPMSW Molybdenum 0.002 0.02 0.5 10 30 U ICPMSW Nickel <0.001 <0.01 0.4 10 40 U ICPMSW	editation	od Code	Leachate Analysis	10:1 Single Stage Leachate Calculated cumulative amount leached @ 10:1		Landfill Waste BSEN	Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/2 @ L/S 10 litre kg-1		
WSLM3 pH (pH units) Calculated data not UKAS Accredited WSLM2 Conductivity (µs/cm) Calculated data not UKAS Accredited U ICPMSW Arsenic 0.003 0.03 0.5 2 25 U ICPMSW Arsenic 0.001 <0.1	Accre	Meth		mg/l except ⁰⁰	mg/kg (dry weight)		mg/kg (dry weig	ht)	
WSLM2 Conductivity (µs/cm) °° Conduct data is 0.000 methods and 0.0000 methods and 0.000 methods an		WSLM3	pH (pH units) ⁰⁰		Calculated data not LIKAS Accredited				
U ICPMSW Arsenic 0.003 0.03 0.5 2 25 U ICPWATVAR Barium <0.01		WSLM2	Conductivity (µs/cm) ⁰⁰		Calculated data not OKAS Accredited				
U ICPWATVAR Barium <0.01 <0.1 20 100 300 U ICPMSW Cadmium <0.0001	U	ICPMSW	Arsenic	0.003	0.03	0.5	2	25	
U ICPMSW Cadmium <0.0001 <0.001 0.04 1 5 U ICPMSW Chromium <0.001	U	ICPWATVAR	Barium	<0.01	<0.1	20	100	300	
U ICPMSW Chromium <0.001 <0.01 0.5 10 70 U ICPMSW Copper 0.002 0.02 2 50 100 U ICPMSW Mercury <0.001	U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5	
U ICPMSW Copper 0.002 0.02 2 50 100 U ICPMSW Mercury <0.0001	U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70	
U ICPMSW Mercury <0.0001 <0.001 0.01 0.2 2 U ICPMSW Molybdenum 0.002 0.02 0.5 10 30 U ICPMSW Nickel <0.001	U	ICPMSW	Copper	0.002	0.02	2	50	100	
U ICPMSW Molybdenum 0.002 0.02 0.5 10 30 U ICPMSW Nickel <0.001	U	ICPMSW	Mercury	<0.0001	<0.001	0.01	0.2	2	
U ICPMSW Nickel <0.001 <0.01 0.4 10 40 U ICPMSW Lead 0.004 0.04 0.5 10 50 U ICPMSW Antimony <0.001	U	ICPMSW	Molybdenum	0.002	0.02	0.5	10	30	
U ICPMSW Lead 0.004 0.04 0.5 10 50 U ICPMSW Antimony <0.001 <0.01 0.06 0.7 5 U ICPMSW Selenium <0.001 <0.01 0.1 0.5 7 U ICPMSW Selenium <0.001 <0.01 0.1 0.5 7 U ICPMSW Zinc 0.009 0.09 4 50 200 U KONENS Chloride 18 180 800 15000 25000 U ISEF Fluoride 0.3 3 10 150 500 U ICPWATVAR Sulphate as SO4 8 80 1000 20000 50000 N WSLM27 Total Dissolved Solids 101 1010 4000 60000 10000 SFAPI Phenol Index 1 1 1 1000 1000	U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40	
U ICPMSW Antimony <0.001 <0.01 0.06 0.7 5 U ICPMSW Selenium <0.001	U	ICPMSW	Lead	0.004	0.04	0.5	10	50	
U ICPMSW Selenium <0.001 <0.01 0.1 0.5 7 U ICPMSW Zinc 0.009 0.09 4 50 200 U KONENS Chloride 18 180 800 15000 25000 U ISEF Fluoride 0.3 3 10 150 500 U ICPWATVAR Sulphate as SO4 8 80 1000 20000 50000 N WSLM27 Total Dissolved Solids 101 1010 4000 60000 100000 SFAPI Phenol Index 1 1 1000 1000 1000	U	ICPMSW	Antimony	<0.001	<0.01	0.06	0.7	5	
U ICPMSW Zinc 0.009 0.09 4 50 200 U KONENS Chloride 18 180 800 15000 25000 U ISEF Fluoride 0.3 3 10 150 500 U ISEF Fluoride 0.3 3 10 150 500 U ICPWATVAR Sulphate as SO4 8 80 1000 20000 50000 N WSLM27 Total Dissolved Solids 101 1010 4000 60000 100000 SFAPI Phenol Index 1 1 1000 1000 1000	U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7	
U KONENS Chloride 18 180 800 15000 25000 U ISEF Fluoride 0.3 3 10 150 500 U ISEF Fluoride 0.3 3 10 150 500 U ICPWATVAR Sulphate as SO4 8 80 1000 20000 50000 N WSLM27 Total Dissolved Solids 101 1010 4000 60000 100000 SFAPI Phenol Index 1 1 1000 1000 1000	U	ICPMSW	Zinc	0.009	0.09	4	50	200	
U ISEF Fluoride 0.3 3 10 150 500 U ICPWATVAR Sulphate as SO4 8 80 1000 20000 50000 N WSLM27 Total Dissolved Solids 101 1010 4000 60000 100000 SFAPI Phenol Index 1 1 1 1000 N WSLM13 Dissolved Organic Carbon 0.82 8.2 500 800 1000	U	KONENS	Chloride	18	180	800	15000	25000	
U ICPWATVAR Sulphate as SO4 8 80 1000 20000 50000 N WSLM27 Total Dissolved Solids 101 1010 4000 60000 100000 SFAPI Phenol Index 1 1 1000 100000 N WSLM13 Dissolved Organic Carbon 0.82 8.2 500 800 10000	U	ISEF	Fluoride	0.3	3	10	150	500	
N WSLM27 Total Dissolved Solids 101 1010 4000 60000 100000 SFAPI Phenol Index 1 1 1 1 100000 N WSLM13 Dissolved Organic Carbon 0.82 8.2 500 800 10000	U	ICPWATVAR	Sulphate as SO4	8	80	1000	20000	50000	
SFAPI Phenol Index 1 N WSLM13 Dissolved Organic Carbon 0.82 8.2 500 800 1000	N	WSLM27	Total Dissolved Solids	101	1010	4000	4000 60000 100000		
N WSI M13 Dissolved Organic Carbon 0.82 8.2 500 800 1000		SFAPI	Phenol Index			1			
	Ν	WSLM13	Dissolved Organic Carbon	0.82	8.2	500	800	1000	

Client	Caugaway Caataah Ltd			Leaching Data		
Client	Causeway Geolech Llu				Weight of sample (kg)	0.093
Contact					Moisture content @ 105°C (% of Wet Weight)	3.9
Contact	Nell Hayyan			Equivalent Weight based on drying at 105°C (kg) 0.09		
Sito	Avena River Sediment S	ompling			Volume of water required to carry out 10:1 stage (litres)	
Sile	Avoca River Sediment Sa	amping		Fraction of sample above 4 mm %	6.000	
Sample Description		Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000
BH08 2 00		019 1264	CL /1796261	00 D + 17		
BH08 2.00		S10_1204 CL/1700201		22-Dec-17		

Note:	lote: The >4mm fraction is crushed using a disc mill									
_				Landfill Waste Acceptance Criteria Limit Values						
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)		Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill				
U	WSLM59	Total Organic Carbon (% M/M)	0.16	3	5	6				
Ν	LOI450	Loss on Ignition (%)	0.6			10				
Ν	BTEXHSA	Sum of BTEX (mg/kg)	< 0.05	6						
	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	<0.60	1						
Ν	TPHFIDUS	Mineral Oil (mg/kg)	20§	500						
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.42	100						
Ν	PHSOIL	pH (pH units)	7.3 §		>6					
	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7			To be evaluated	To be evaluated				

by Vertical fs by Vertical mg/l except ∞ mg/kg (dry weight) mg/kg (dry weight) WSLM3 pH (pH units) ∞ Calculated data not UKAS Accredited Image (dry weight) Image (dry weight) U ICPMSW Arsenic 0.009 0.09 0.5 2 25 U ICPMATVAR Barium 0.04 0.4 20 100 300 U ICPMSW Cadmium 0.001 0.001 0.04 1 5 U ICPMSW Cadmium 0.003 0.03 0.5 10 70 U ICPMSW Chromium 0.0025 0.25 2 50 100 U ICPMSW Mercury <0.001 <0.01 0.2 2 2 10 U ICPMSW Molybdenum <0.001 <0.01 0.5 10 30 U ICPMSW Nickel 0.001 <0.01 0.5 10 50 U ICPMSW Nickel 0.	editation	od Code	Leachate Analysis	10:1 Single Stage Leachate Calculated cumulative amount leached @ 10:1		Landfill Waste BSEN	Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/2 @ L/S 10 litre kg-1		
WSLM3 pH (pH units) ^{oo} Calculated data not UKAS Accredited Image: Calculated data not UKAS Accredited dat	Accre	Meth		mg/l except ⁰⁰	mg/kg (dry weight)		mg/kg (dry weig	ht)	
WSLM2 Conductivity (µs/cm) ⁰⁰ Conductor data no once needed Image: Conductivity (µs/cm) ⁰⁰ U ICPMSW Arsenic 0.009 0.09 0.5 2 25 U ICPMSW Barium 0.04 0.4 20 100 300 U ICPMSW Cadmium 0.001 0.04 1 5 U ICPMSW Cadmium 0.003 0.03 0.5 10 70 U ICPMSW Copper 0.025 0.25 2 50 100 U ICPMSW Mercury <0.001		WSLM3	pH (pH units) ºº		Calculated data not LIKAS Accredited				
U ICPMSW Arsenic 0.009 0.09 0.5 2 25 U ICPWATVAR Barium 0.04 0.4 20 100 300 U ICPMSW Cadmium 0.0001 0.001 0.04 1 5 U ICPMSW Cadmium 0.003 0.03 0.5 10 70 U ICPMSW Copper 0.025 0.25 2 50 100 U ICPMSW Mercury <0.001		WSLM2	Conductivity (µs/cm) ⁰⁰		Calculated data not OKAS Accredited				
U ICPWATVAR Barium 0.04 0.4 20 100 300 U ICPMSW Cadmium 0.0001 0.001 0.04 1 5 U ICPMSW Chromium 0.003 0.03 0.5 10 70 U ICPMSW Copper 0.025 0.25 2 50 100 U ICPMSW Mercury <0.0001	U	ICPMSW	Arsenic	0.009	0.09	0.5	2	25	
U ICPMSW Cadmium 0.0001 0.001 0.04 1 5 U ICPMSW Chromium 0.003 0.03 0.5 10 70 U ICPMSW Copper 0.025 0.25 2 50 100 U ICPMSW Mercury <0.001	U	ICPWATVAR	Barium	0.04	0.4	20	100	300	
U ICPMSW Chromium 0.003 0.03 0.5 10 70 U ICPMSW Copper 0.025 0.25 2 50 100 U ICPMSW Mercury <0.0001	U	ICPMSW	Cadmium	0.0001	0.001	0.04	1	5	
U ICPMSW Copper 0.025 0.25 2 50 100 U ICPMSW Mercury <0.0001	U	ICPMSW	Chromium	0.003	0.03	0.5	10	70	
U ICPMSW Mercury <0.0001 <0.001 0.01 0.2 2 U ICPMSW Molybdenum <0.001	U	ICPMSW	Copper	0.025	0.25	2	50	100	
U ICPMSW Molybdenum <0.001 <0.01 0.5 10 30 U ICPMSW Nickel 0.004 0.04 0.4 10 40 U ICPMSW Lead 0.031 0.31 0.5 10 50 U ICPMSW Antimony <0.001	U	ICPMSW	Mercury	<0.0001	<0.001	0.01	0.2	2	
U ICPMSW Nickel 0.004 0.04 0.4 10 40 U ICPMSW Lead 0.031 0.31 0.5 10 50 U ICPMSW Antimony <0.001	U	ICPMSW	Molybdenum	<0.001	<0.01	0.5	10	30	
U ICPMSW Lead 0.031 0.31 0.5 10 50 U ICPMSW Antimony <0.001	U	ICPMSW	Nickel	0.004	0.04	0.4	10	40	
U ICPMSW Antimony <0.001 <0.01 0.06 0.7 5 U ICPMSW Selenium <0.001	U	ICPMSW	Lead	0.031	0.31	0.5	10	50	
U ICPMSW Selenium <0.001 <0.01 0.1 0.5 7 U ICPMSW Zinc 0.106 1.06 4 50 200 U KONENS Chloride 26 260 800 15000 25000 U ISEF Fluoride 0.3 3 10 150 500 U ICPWATVAR Sulphate as SO4 14 140 1000 20000 50000 N WSLM27 Total Dissolved Solids 103 1030 4000 60000 100000 SFAPI Phenol Index 1 1 1 1000 1000 N WSLM13 Dissolved Organic Carbon 1.7 17 500 800 1000	U	ICPMSW	Antimony	<0.001	<0.01	0.06	0.7	5	
U ICPMSW Zinc 0.106 1.06 4 50 200 U KONENS Chloride 26 260 800 15000 25000 U ISEF Fluoride 0.3 3 10 150 500 U ICPWATVAR Sulphate as SO4 14 140 1000 20000 50000 N WSLM27 Total Dissolved Solids 103 1030 4000 60000 100000 SFAPI Phenol Index 1.7 17 500 800 1000	U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7	
U KONENS Chloride 26 260 800 1500 25000 U ISEF Fluoride 0.3 3 10 150 500 U ICPWATVAR Sulphate as SO4 14 140 1000 20000 50000 N WSLM27 Total Dissolved Solids 103 1030 4000 60000 100000 SFAPI Phenol Index 1 1	U	ICPMSW	Zinc	0.106	1.06	4	50	200	
U ISEF Fluoride 0.3 3 10 150 500 U ICPWATVAR Sulphate as SO4 14 140 1000 20000 50000 N WSLM27 Total Dissolved Solids 103 1030 4000 60000 100000 SFAPI Phenol Index 1 1 1000 100000 N WSLM13 Dissolved Organic Carbon 1.7 17 500 800 10000	U	KONENS	Chloride	26	260	800	15000	25000	
U ICPWATVAR Sulphate as SO4 14 140 1000 20000 50000 N WSLM27 Total Dissolved Solids 103 1030 4000 60000 100000 SFAPI Phenol Index 1 1 - - N WSLM13 Dissolved Organic Carbon 1.7 17 500 800 1000	U	ISEF	Fluoride	0.3	3	10	150	500	
N WSLM27 Total Dissolved Solids 103 1030 4000 60000 100000 SFAPI Phenol Index 1 1 1 1 1 1 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 10000000 1000000 10000000 100000000 1000000000000000000000000000000000000	U	ICPWATVAR	Sulphate as SO4	14	140	1000	20000	50000	
SFAPI Phenol Index 1 N WSLM13 Dissolved Organic Carbon 1.7 17 500 800 1000	N	WSLM27	Total Dissolved Solids	103	1030	4000	4000 60000 100000		
N WSLM13 Dissolved Organic Carbon 1.7 17 500 800 1000		SFAPI	Phenol Index			1			
	Ν	WSLM13	Dissolved Organic Carbon	1.7	17	500	800	1000	

Client	Courseway Costoph Ltd				Leaching Data				
Client	Causeway Geolech Llu				Weight of sample (kg)	0.094			
Contact					Moisture content @ 105°C (% of Wet Weight)	8.9			
Comaci	Neil Hayyan	Equivalent Weight based on drying at 105°C (kg) 0.0							
Site	Avena River Sediment S	ompling		Volume of water required to carry out 10:1 stage (litres)	0.896				
Sile	Avoca River Sediment Sa	amping			Fraction of sample above 4 mm %	82.800			
Samp	le Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000			
		c18 1264	CI /1786262	22-Doc-17					
		510_1204	GL/1700202	22-Det-17					
Note: The >4mm fract	ion is crushed using a disc mill								

	A			Landfill Was	te Acceptance Cri	teria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
U	WSLM59	Total Organic Carbon (% M/M)	0.23	3	5	6
Ν	LOI450	Loss on Ignition (%)	0.9			10
Ν	BTEXHSA	Sum of BTEX (mg/kg)	<0.055	6		
	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	<0.60	1		
Ν	TPHFIDUS	Mineral Oil (mg/kg)	25§	500		
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.49	100		
Ν	PHSOIL	pH (pH units)	8.6 §		>6	
	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7			To be evaluated	To be evaluated

editation	od Code	Leachate Analysis	10:1 Single Stage Leachate	Calculated cumulative amount leached @ 10:1	Landfill Waste BSEN	Acceptance Crite N 12457/2 @ L/S 10	ria Limit Values for) litre kg-1
Accre	Meth		mg/l except ⁰⁰	mg/kg (dry weight)		mg/kg (dry weig	ht)
	WSLM3	pH (pH units) ⁰⁰		Calculated data pot LIKAS Accredited			
	WSLM2	Conductivity (µs/cm) ⁰⁰		Calculated data not OKAS Accredited			
U	ICPMSW	Arsenic	0.002	0.02	0.5	2	25
U	ICPWATVAR	Barium	<0.01	<0.1	20	100	300
U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5
U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70
U	ICPMSW	Copper	<0.001	<0.01	2	50	100
U	ICPMSW	Mercury	<0.0001	<0.001	0.01	0.2	2
U	ICPMSW	Molybdenum	0.003	0.03	0.5	10	30
U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40
U	ICPMSW	Lead	<0.001	<0.01	0.5	10	50
U	ICPMSW	Antimony	<0.001	<0.01	0.06	0.7	5
U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7
U	ICPMSW	Zinc	0.002	0.02	4	50	200
U	KONENS	Chloride	103	1030	800	15000	25000
U	ISEF	Fluoride	0.4	4	10	150	500
U	ICPWATVAR	Sulphate as SO4	32	320	1000	20000	50000
Ν	WSLM27	Total Dissolved Solids	365	3650	4000	60000	100000
	SFAPI	Phenol Index			1		
Ν	WSLM13	Dissolved Organic Carbon	1.1	11	500	800	1000
Tomple	ate Ver 1			Landfill W	aste Accentance Cri	toria limit values corre	ct as of 11th March 2009

Client	Courseway Cootoob Ltd				Leaching Data						
Client	Causeway Geolech Lid				Weight of sample (kg)	0.097					
Contact					Moisture content @ 105°C (% of Wet Weight)	7.4					
Comaci	Nell Hayyan	Equivalent Weight based on drying at 105°C (kg) 0.0									
Site	Avon Diver Sediment S	ompling		Volume of water required to carry out 10:1 stage (litres)	0.893						
Site	Avoca River Sediment Sa	ampling			Fraction of sample above 4 mm % 33.						
Samp	le Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000					
		c19 1264	CL /1796262	22 Dec 17							
	01092.00	510_1204	CL/1700203	22-Det-17							
Note: The >4mm fraction is crushed using a disc mil											

_	â			Landfill Was	te Acceptance Cri	teria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
U	WSLM59	Total Organic Carbon (% M/M)	0.16	3	5	6
Ν	LOI450	Loss on Ignition (%)	0.9			10
Ν	BTEXHSA	Sum of BTEX (mg/kg)	<0.055	6		
	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	<0.60	1		
Ν	TPHFIDUS	Mineral Oil (mg/kg)	13§	500		
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.47	100		
Ν	PHSOIL	pH (pH units)	7.8 §		>6	
	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7			To be evaluated	To be evaluated

by <th>editation</th> <th>od Code</th> <th>Leachate Analysis</th> <th>10:1 Single Stage Leachate</th> <th>Calculated cumulative amount leached @ 10:1</th> <th>Landfill Waste BSEN</th> <th>Acceptance Crite N 12457/2 @ L/S 10</th> <th>ria Limit Values for) litre kg-1</th>	editation	od Code	Leachate Analysis	10:1 Single Stage Leachate	Calculated cumulative amount leached @ 10:1	Landfill Waste BSEN	Acceptance Crite N 12457/2 @ L/S 10	ria Limit Values for) litre kg-1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Accre	Meth		mg/l except ⁰⁰	mg/kg (dry weight)		mg/kg (dry weig	ht)
WSLM2 Conductivity (μs/cm) ⁰⁰ Conduction of the one of the on		WSLM3	pH (pH units) ^{oo}		Calculated data pot LIKAS Accredited			
U ICPMSW Arsenic 0.002 0.02 0.5 2 25 U ICPWATVAR Barium <0.01		WSLM2	Conductivity (µs/cm) ⁰⁰		Calculated data not OKAS Accredited			
U ICPWATVAR Barium <0.01 <0.1 20 100 300 U ICPMSW Cadmium <0.001	U	ICPMSW	Arsenic	0.002	0.02	0.5	2	25
U ICPMSW Cadmium <0.001 <0.001 0.04 1 5 U ICPMSW Chromium <0.001	U	ICPWATVAR	Barium	<0.01	<0.1	20	100	300
U ICPMSW Chromium <0.001 <0.01 0.5 10 70 U ICPMSW Copper <0.001	U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5
U ICPMSW Copper <0.001 <0.01 2 50 100 U ICPMSW Mercury <0.0001	U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70
U ICPMSW Mercury <0.0001 <0.01 0.2 2 U ICPMSW Molybdenum 0.004 0.04 0.5 10 30 U ICPMSW Nickel <0.001	U	ICPMSW	Copper	<0.001	<0.01	2	50	100
U ICPMSW Molybdenum 0.004 0.04 0.5 10 30 U ICPMSW Nickel <0.001	U	ICPMSW	Mercury	<0.0001	<0.001	0.01	0.2	2
U ICPMSW Nickel <0.001 <0.01 0.4 10 40 U ICPMSW Lead <0.001	U	ICPMSW	Molybdenum	0.004	0.04	0.5	10	30
U ICPMSW Lead <0.001 <0.01 0.5 10 50 U ICPMSW Antimony 0.001 0.01 0.06 0.7 5 U ICPMSW Selenium <0.001	U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40
U ICPMSW Antimony 0.001 0.01 0.06 0.7 5 U ICPMSW Selenium <0.001	U	ICPMSW	Lead	<0.001	<0.01	0.5	10	50
U ICPMSW Selenium <0.001 <0.01 0.5 7 U ICPMSW Zinc 0.002 0.02 4 50 200 U KONENS Chloride 137 1370 800 15000 25000 U ISEF Fluoride 0.4 4 10 150 500 U ICPWATVAR Sulphate as SO4 54 540 1000 20000 50000 N WSLM27 Total Dissolved Solids 517 5170 4000 60000 100000 SFAPI Phenol Index 1 10 500 800 1000	U	ICPMSW	Antimony	0.001	0.01	0.06	0.7	5
U ICPMSW Zinc 0.002 0.02 4 50 200 U KONENS Chloride 137 1370 800 15000 25000 U ISEF Fluoride 0.4 4 10 150 500 U ISEF Fluoride 0.4 4 100 150 500 U ICPWATVAR Sulphate as SO4 54 540 1000 20000 50000 N WSLM27 Total Dissolved Solids 517 5170 4000 60000 100000 SFAPI Phenol Index 1 10 500 800 1000	U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7
U KONENS Chloride 137 1370 800 1500 25000 U ISEF Fluoride 0.4 4 10 150 500 U ICPWATVAR Sulphate as SO4 54 540 1000 20000 50000 N WSLM27 Total Dissolved Solids 517 5170 4000 60000 100000 SFAPI Phenol Index 1 1	U	ICPMSW	Zinc	0.002	0.02	4	50	200
U ISEF Fluoride 0.4 4 10 150 500 U ICPWATVAR Sulphate as SO4 54 540 1000 20000 50000 N WSLM27 Total Dissolved Solids 517 5170 4000 60000 100000 SFAPI Phenol Index 1 1 1 1000 N WSLM13 Dissolved Organic Carbon 1 10 500 800 1000	U	KONENS	Chloride	137	1370	800	15000	25000
U ICPWATVAR Sulphate as SO4 54 540 1000 20000 50000 N WSLM27 Total Dissolved Solids 517 5170 4000 60000 100000 SFAPI Phenol Index 1 1 1 1 1000 N WSLM13 Dissolved Organic Carbon 1 10 500 800 10000	U	ISEF	Fluoride	0.4	4	10	150	500
N WSLM27 Total Dissolved Solids 517 5170 4000 60000 100000 SFAPI Phenol Index 1 1 1 1 1 10000 N WSLM13 Dissolved Organic Carbon 1 10 500 800 10000	U	ICPWATVAR	Sulphate as SO4	54	540	1000	20000	50000
SFAPI Phenol Index 1 1 N WSLM13 Dissolved Organic Carbon 1 10 500 800 1000	Ν	WSLM27	Total Dissolved Solids	517	5170	4000	60000	100000
N WSLM13 Dissolved Organic Carbon 1 10 500 800 1000		SFAPI	Phenol Index			1		
	Ν	WSLM13	Dissolved Organic Carbon	1	10	500	800	1000

ASBESTOS ANALYSIS RESULTS

Detection limit of Method SCI-ASB-020 is 0.001%

SOCOTEC Asbestos Limited Certificate of Analysis for Asbestos in Soils, Sediments and Aggregates

1089	

Sampling has been carried out by a third party

							1089					SOCOTEC
Client:			SOCOTEC	Environmenta	l Chemistry			•		Page 1 of 2		•
Address:			Etwall Hous	e, Bretby Bus	iness Park, A	shby Road, Burt	on upon Trent			Report No:	ANO-0503-17264	
For the atten	tion of:		Causeway (Geotech Ltd		,	•			Report Date:	21/12/2017	
Site Address	:		Avoca Rive	r Sediment Sa	mpling					Project Number:	S181264	
Sample Number	Sample Date	Sample Location & Matrix	Test Date	Total Sample Dry Weight (g)	Weight of <10mm Fraction (g)	Asbestos(g) in >10mm	Asbestos(g) in < 10mm	% Asbestos by weight of Total Dried Sample	Moisture Content		Asbestos Fibre Types	Identified
CL/1786240	07/11/17	BH01 0.10 Soils	20/12/2017	416.8	416.0			Identification			NAIIS	
CL/1786241	07/11/17	BH01 1.00 Soils	20/12/2017	302.0	293.4			Identification			NAIIS	
CL/1786242	08/11/17	BH02 0.50 Soils	20/12/2017	1745.0	651.0			Identification			NAIIS	
CL/1786243	08/11/17	BH02 1.50 Soils	20/12/2017	898.6	340.3			Identification			NAIIS	
CL/1786244	08/11/17	BH03 0.50 Soils	20/12/2017	1585.0	1092.6			Identification			NAIIS	
CL/1786245	08/11/17	BH03 1.50 Soils	20/12/2017	487.7	376.5			Identification			NAIIS	
CL/1786246	08/11/17	BH03 2.50 Soils	20/12/2017	467.1	220.6			Identification			NAIIS	
CL/1786247	08/11/17	BH04 0.50 Soils	20/12/2017	731.9	352.0			Identification			NAIIS	
CL/1786248	08/11/17	BH04 1.50 Soils	20/12/2017	948.5	374.4			Identification			NAIIS	
CL/1786249	08/11/17	BH04 2.50 Soils	20/12/2017	781.5	485.6			Identification			NAIIS	
CL/1786250	09/11/17	BH05 0.50 Soils	20/12/2017	1653.0	922.6			Identification			NAIIS	
CL/1786251	09/11/17	BH05 1.00 Soils	20/12/2017	377.6	288.7			Identification			Chrysotile(Free Fi	bres)
CL/1786252	09/11/17	BH05 2.00 Soils	20/12/2017	271.0	216.0			Identification			NAIIS	
CL/1786253	09/11/17	BH05 3.00 Soils	21/12/2017	669.4	506.1			Identification			NAIIS	
CL/1786254	09/11/17	BH06 0.50 Soils	20/12/2017	389.4	250.6			Identification			NAIIS	
CL/1786255	09/11/17	BH06 1.00 Soils	20/12/2017	506.3	434.2			Identification			NAIIS	
CL/1786256	09/11/17	BH06 2.00 Soils	20/12/2017	626.0	502.9			Identification			NAIIS	
CL/1786257	09/11/17	BH06 3.00 Soils	20/12/2017	357.9	277.4			Identification			NAIIS	
CL/1786258	09/11/17	BH07 1.00 Soils	20/12/2017	345.2	282.0			Identification			NAIIS	
CL/1786259	09/11/17	BH07 2.00 Soils	21/12/2017	600.5	517.9			Identification			NAIIS	
Key	vs	NAACR = Not Analysed a	at Clients Reques	t		NAIIS = No As	bestos Identified in Sam	ple (Identification O	nly)	Name:	Tom Pratt	Authorised Signatory:
		* visible to n	aked eye			NADIS = No	Asbestos Detected in Sa	mple (ID & Quant Or	nly)	Position:	Lab Supervisor	The
The sample anal using SOCOTEC fibres. All fibres	lysis for the abo Asbestos Limi are assumed, u	ve results was carried out using the proo ted in house method of transmitted/polar unless specified, to be amphiboles. All te	cedures detailed rised light micros ests were carried	in SOCOTEC As copy and centre out at SOCOTE	bestos Limited i stop dispersion C Asbestos Lab	n house method (So staining (SCI-ASB- oratory, Ashbourne	CI-ASB-020) based on B 007), based on HSE's H House, Bretby Busines	EA document Quan SG 248. The analy s Park, Ashby Roac	tification of asbestos in s sis of the < 10mm fractions, Burton-upon-Trent, Sta	oil and associated mat on for asbestos content iffordshire. DE15 0YZ,	erials - Draft 12 - February 2016. only includes ACMs and fibres ar UKAS Laboratory Number 1089.	Fibre identification was carried out ad does not discriminate non-asbestos

ASBESTOS ANALYSIS RESULTS

Detection limit of Method SCI-ASB-020 is 0.001%

Sampling has been carried out by a third party

SOCOTEC

SOCOTEC Asbestos Limited Certificate of Analysis for Asbestos in Soils, Sediments and Aggregates

							1089					SOCOTEC
Client:			SOCOTEC	Environmenta	I Chemistry					Page 2 of 2		
Address:			Etwall Hous	e. Bretby Bus	iness Park. A	shby Road, Burto	on upon Trent			Report No:	ANO-0503-17264	
For the attent	tion of:		Causeway (Geotech Ltd						Report Date:	21/12/2017	
Site Address:	:		Avoca River	r Sediment Sa	mpling					Project Number:	S181264	
Sample Number	Sample Date	Sample Location & Matrix	Test Date	Total Sample Dry Weight (g)	Weight of <10mm Fraction (g)	Asbestos(g) in >10mm	Asbestos(g) in < 10mm	% Asbestos by weight of Total Dried Sample	Moisture Content		Asbestos Fibre Types I	dentified
CL/1786260	10/11/17	BH08 1.00 Soils	20/12/2017	524.1	289.3			Identification			NAIIS	
CL/1786261	10/11/17	BH08 2.00 Soils	20/12/2017	465.0	220.2			Identification			NAIIS	
CL/1786262	10/11/17	BH09 0.50 Soils	20/12/2017	347.2	165.4			Identification			NAIIS	
CL/1780203	10/11/17	BH09 2.00 Solis	20/12/2017	560.7	541.Z			Identification			INAIIS	
						1	-					
Ko	16	NAACR = Not Analysed at	Clients Reques	t		NAIIS = No As	bestos Identified in Sam	ple (Identification O	nly)	Name:	Tom Pratt	Authorised Signatory:
Rey	y 3	* visible to na	ked eye			NADIS = No A	sbestos Detected in Sar	nple (ID & Quant On	ily)	Position:	Lab Supervisor	The
The sample anal using SOCOTEC fibres. All fibres	ysis for the abo Asbestos Limi are assumed, u	ove results was carried out using the proce ited in house method of transmitted/polarie unless specified, to be amphiboles. All tes	edures detailed i sed light microso sts were carried	in SOCOTEC As copy and centre out at SOCOTE	bestos Limited i stop dispersion C Asbestos Lab	n house method (S0 staining (SCI-ASB-0 oratory, Ashbourne	CI-ASB-020) based on E 07), based on HSE's H House, Bretby Business	A document Quant SG 248. The analy Park, Ashby Road	ification of asbestos in s sis of the < 10mm fractic , Burton-upon-Trent, Sta	oil and associated mate on for asbestos content ffordshire. DE15 0YZ,	erials - Draft 12 - February 2016. F only includes ACMs and fibres and UKAS Laboratory Number 1089.	fibre identification was carried out d does not discriminate non-asbestos

Customer

SOCOTEC UK Ltd Environmental Chemistry Analytical and Deviating Sample Overview

Consignment No S_NonCon

Site **Avoca River Sediment Sampling Report No** S181264

Causeway Geotech Ltd

Date Logged 05-Dec-2017 In-House Report Due 27-Dec-2017

Please note the results for any subcontracted analysis (identified with a '^') is likely to take up to an additional five working days.

		MethodID	ANC	CALC_CR3	CEN Leachate	CustServ	GROHSA	ICPMSS												ICPSOIL	KONECR	LOI(%MM)	OGSNSED			PAHMSUS	PCBMS3Q
ID Number	Description	Sampled	Carbonate %	Chromium (III)	CEN Leac(P)C	Report C	GRO (AA) by HSA GC-FID	Antimony (MS) Sediments	Copper (MS) Sediment	Molybdenum (MS) Sediments	Selenium (MS) Sediments	Tin (MS) Sediment	Arsenic (MS) Sediments	Cadmium (MS) Sediments	Chromium (MS) Sediments	Lead (MS) Sediments	Mercury (MS) Sediments	Nickel (MS) Sediments	Zinc (MS) Sediments	Barium. Sediment	Chromium vi:	L.O.I. % @ 450C	Dibutyl Tin (Sediments)	Tributyl Tin (Sediments)	Triphenyl Tin(Sediments)	PAH (17) by GCMS	Organochlorine Pesticides (Marine Sediments)
CL/1786240	BH01 0.10	07/11/17																									
CL/1786241	BH01 1.00	07/11/17																									
CL/1786242	BH02 0.50	08/11/17																									
CL/1786243	BH02 1.50	08/11/17																									
CL/1786244	BH03 0.50	08/11/17																									
CL/1786245	BH03 1.50	08/11/17																									
CL/1786246	BH03 2.50	08/11/17																									
CL/1786247	BH04 0.50	08/11/17																									
CL/1786248	BH04 1.50	08/11/17																								\vdash	
CL/1786249	BH04 2.50	08/11/17																								\square	
GL/1786250	BH05 0.50	09/11/17		<u> </u>																						\square	
CL/1786251	BH05 1.00	09/11/17		<u> </u>																						\square	
GL/1786252	BH05 2.00	09/11/17																								\square	
UL/1/86253		09/11/17																								\square	
UL/1786254	BHU0 U.5U	09/11/17																									

Note: We will endeavour to prioritise samples to complete analysis within	Deviating Sample Key
holding time; however any delay could result in samples becoming	A The sample was received in an inappropriate container for this analysis
deviant whilst being processed in the laboratory.	B The sample was received without the correct preservation for this analysis
	C Headspace present in the sample container
If sampling dates are missing or matrices unclassified then results will	D The sampling date was not supplied so holding time may be compromised - applicable to all analysis
not be ISO 17025 accredited. Please contact us as soon as possible to	E Sample processing did not commence within the appropriate holding time
provide missing information in order to reinstate accreditation.	F Sample processing did not commence within the appropriate handling time
	Requested Analysis Key
	Analysis Required
	Analysis dependant upon trigger result - Note: due date may be affected if triggered
	No analysis scheduled
	Analysis Subcontracted - Note: due date may vary

Where individual results are flagged see report notes for status. Page 63 of 70 he integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling. EFS/181264 Ver. 2

SOCOTEC UK Ltd Environmental Chemistry Analytical and Deviating Sample Overview

CustomerCauseway Geotech LtdSiteAvoca River Sediment SamplingReport NoS181264

Consignment No S_NonCon Date Logged 05-Dec-2017

In-House Report Due 27-Dec-2017

Please note the results for any subcontracted analysis (identified with a '^') is likely to take up to an additional five working days.

		MethodID	PCBMS3Q	PHSOIL	Sub002	Sub061	SVOCMSUS		TMSS	TMSSCALC	TPHFIDUS		TPHUSSI	WSLM59
ID Number	Description	Sampled	PCB-7 Congeners (Marine Sediments)	pH units (AR)	^Asbestos Screen & ID (Stage 1)	^Particle Size Analysis (Sediment)	SVOC by GCMS (AR)	Hexachlorobutadiene	Tot.Moisture @ 105C	Dry Matter %	TPH Band (>C10-C40)	TPH by GCFID (AR)	TPH by GCFID (AR/Si)	Total Organic Carbon (Sediment)
CL/1786240	BH01 0 10	07/11/17												
CL/1786240	BH01 1 00	07/11/17												
CL/1786242	BH02 0.50	08/11/17												
CL/1786243	BH02 1.50	08/11/17												
CL/1786244	BH03 0.50	08/11/17												
CL/1786245	BH03 1.50	08/11/17												
CL/1786246	BH03 2.50	08/11/17						1						
CL/1786247	BH04 0.50	08/11/17						1						
CL/1786248	BH04 1.50	08/11/17												
CL/1786249	BH04 2.50	08/11/17					1							
CL/1786250	BH05 0.50	09/11/17												
CL/1786251	BH05 1.00	09/11/17												
CL/1786252	BH05 2.00	09/11/17												
CL/1786253	BH05 3.00	09/11/17												
CL/1786254	BH06 0.50	09/11/17												

Deviating Sample Key Note: We will endeavour to prioritise samples to complete analysis within holding time; however any delay could result in samples becoming The sample was received in an inappropriate container for this analysis A deviant whilst being processed in the laboratory. в The sample was received without the correct preservation for this analysis С Headspace present in the sample container If sampling dates are missing or matrices unclassified then results will D The sampling date was not supplied so holding time may be compromised - applicable to all analysis Е not be ISO 17025 accredited. Please contact us as soon as possible to Sample processing did not commence within the appropriate holding time provide missing information in order to reinstate accreditation. Sample processing did not commence within the appropriate handling time Requested Analysis Key Analysis Required Analysis dependant upon trigger result - Note: due date may be affected if triggered No analysis scheduled

Where individual results are flagged see report notes for status.

Page 64 of 70 he integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling. EFS/181264 Ver. 2

Analysis Subcontracted - Note: due date may vary

Customer

SOCOTEC UK Ltd Environmental Chemistry Analytical and Deviating Sample Overview

Consignment No S_NonCon Date Logged 05-Dec-2017

SiteAvoca River Sediment SamplingReport No\$181264

Causeway Geotech Ltd

In-House Report Due 27-Dec-2017

Please note the results for any subcontracted analysis (identified with a '^') is likely to take up to an additional five working days.

		MethodID	ANC	CALC_CR3	CEN Leachate	CustServ	GROHSA	ICPMSS												ICPSOIL	KONECR	LOI(%MM)	OGSNSED			PAHMSUS	PCBMS3Q
ID Number	Description	Sampled	Carbonate %	Chromium (III)	CEN Leac(P)C	Report C	GRO (AA) by HSA GC-FID	Antimony (MS) Sediments	Copper (MS) Sediment	Molybdenum (MS) Sediments	Selenium (MS) Sediments	Tin (MS) Sediment	Arsenic (MS) Sediments	Cadmium (MS) Sediments	Chromium (MS) Sediments	Lead (MS) Sediments	Mercury (MS) Sediments	Nickel (MS) Sediments	Zinc (MS) Sediments	Barium. Sediment	Chromium vi:	L.O.I. % @ 450C	Dibutyl Tin (Sediments)	Tributyl Tin (Sediments)	Triphenyl Tin(Sediments)	PAH (17) by GCMS	Organochlorine Pesticides (Marine Sediments)
CL/1786255	BH06 1.00	09/11/17																									
CL/1786256	BH06 2.00	09/11/17																									
CL/1786257	BH06 3.00	09/11/17																									
CL/1786258	BH07 1.00	09/11/17																									
CL/1786259	BH07 2.00	09/11/17																									
CL/1786260	BH08 1.00	10/11/17																									
CL/1786261	BH08 2.00	10/11/17																									
CL/1786262	BH09 0.50	10/11/17																									
CL/1786263	BH09 2.00	10/11/17																									
CL/1786264	CRM	10/11/17																									
CL/1786265	QC Blank																										
CL/1786266	Reference Material (% Recovery	y)																									

Note: We will endeavour to prioritise samples to complete analysis within	Deviating Sample Key
holding time; however any delay could result in samples becoming	A The sample was received in an inappropriate container for this analysis
deviant whilst being processed in the laboratory.	B The sample was received without the correct preservation for this analysis
	C Headspace present in the sample container
If sampling dates are missing or matrices unclassified then results will	D The sampling date was not supplied so holding time may be compromised - applicable to all analysis
not be ISO 17025 accredited. Please contact us as soon as possible to	E Sample processing did not commence within the appropriate holding time
provide missing information in order to reinstate accreditation.	F Sample processing did not commence within the appropriate handling time
	Requested Analysis Key
	Analysis Required
	Analysis dependant upon trigger result - Note: due date may be affected if triggered
	No analysis scheduled
	Analysis Subcontracted - Note: due date may vary

Where individual results are flagged see report notes for status.

Page 65 of 70 he integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling. EFS/181264 Ver. 2

SOCOTEC UK Ltd Environmental Chemistry Analytical and Deviating Sample Overview

CustomerCauseway Geotech LtdSiteAvoca River Sediment SamplingReport NoS181264

Consignment No S_NonCon Date Logged 05-Dec-2017

In-House Report Due 27-Dec-2017

Please note the results for any subcontracted analysis (identified with a '^') is likely to take up to an additional five working days.

		MethodID	PCBMS3Q	PHSOIL	Sub002	Sub061	SVOCMSUS		TMSS	TMSSCALC	TPHFIDUS		TPHUSSI	WSLM59	
ID Number	Description	Sampled	PCB-7 Congeners (Marine Sediments)	pH units (AR)	^Asbestos Screen & ID (Stage 1)	^Particle Size Analysis (Sediment)	SVOC by GCMS (AR)	Hexachlorobutadiene	Tot.Moisture @ 105C	Dry Matter %	TPH Band (>C10-C40)	TPH by GCFID (AR)	TPH by GCFID (AR/Si)	Total Organic Carbon (Sediment)	
CL/1786255	BH06 1.00	09/11/17													
CL/1786256	BH06 2.00	09/11/17													
CL/1786257	BH06 3.00	09/11/17													
CL/1786258	BH07 1.00	09/11/17													
CL/1786259	BH07 2.00	09/11/17													
CL/1786260	BH08 1.00	10/11/17													
CL/1786261	BH08 2.00	10/11/17													
CL/1786262	BH09 0.50	10/11/17													
CL/1786263	BH09 2.00	10/11/17													
CL/1786264	CRM	10/11/17													
CL/1786265	QC Blank														
CL/1786266	Reference Material (% Recovery	/)													1

Note: We will endeavour to prioritise samples to complete analysis within holding time; however any delay could result in samples becoming deviant whilst being processed in the laboratory.

If sampling dates are missing or matrices unclassified then results will not be ISO 17025 accredited. Please contact us as soon as possible to provide missing information in order to reinstate accreditation.

A	The sample was received in an inappropriate container for this analysis
В	The sample was received without the correct preservation for this analysis
С	Headspace present in the sample container
D	The sampling date was not supplied so holding time may be compromised - applicable to all analysis
Е	Sample processing did not commence within the appropriate holding time
F	Sample processing did not commence within the appropriate handling time
Rec	uested Analysis Key
	Analysis Required
	Analysis dependant upon trigger result - Note: due date may be affected if triggered
	No analysis scheduled

Where individual results are flagged see report notes for status.

Page 66 of 70 he integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling. EFS/181264 Ver. 2

Report Number : EFS/181264

Additional Report Notes

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report

Method Descriptions

Matrix	MethodID	Analysis Basis	Method Description
Soil	ANC	Oven Dried	Quantitative digestion with Hydrochloric Acid back titration with 1M
		@ < 35°C	Sodium Hydroxide to pH 7
Soil	CALC_CR3	Oven Dried	Calculated from the difference between Total Chromium and
		@ < 35°C	Hexavalent Chromium
Soil	GROHSA	As Received	Determination of Total Gasoline Range Organics Hydrocarbons
			(GRO) by Headspace GCFID
Soil	ICPMSS	Oven Dried	Determination of Metals in Marine Sediments and Soil samples by
		@ < 35°C	aqua regia digestion followed by ICPMS detection
Soil	ICPSOIL	Oven Dried	Determination of Metals in soil samples by aqua regia digestion
		@ < 35°C	followed by ICPOES detection
Soil	KONECR	Oven Dried	Determination of Chromium vi in soil samples by water extraction
		@ < 35°C	followed by colorimetric detection
Soil	LOI(%MM)	Oven Dried	Determination of loss on ignition for soil samples at specified
		@ < 35°C	temperature by gravimetry
Soil	OGSNSED	As Received	Determination of Organo-tin compounds using sonic extraction in
			methanol, derivatiseation with Sodium Tetraethylborate and GCMS
			quantitation (SIM mode).
Soil	PAHMSUS	As Received	Determination of Polycyclic Aromatic Hydrocarbons (PAH) by
-			hexane/acetone extraction followed by GCMS detection
Soil	PCBMS3Q	As Received	Determination of Polychlorinated Biphenyl (PCB) congeners by
-			hexane/acetone extraction followed by GCECD detection
Soil	PHSOIL	As Received	Determination of pH of 2.5:1 deionised water to soil extracts using
-			pH probe.
Soil	SubCon*	*	Contact Laboratory for details of the methodology used by the sub-
			contractor.
Soil	SVOCMSUS	As Received	Determination of Semi Volatile Organic Compounds in soil samples
			by Dichloromethane/Acetone extraction followed by GCMS
Soil	IMSS	As Received	Determination of the Total Moisture content at 105°C by loss on
0			oven drying gravimetric analysis (% based upon wet weight)
Soll	TMSSCALC	As Received	Calculated from the 100 - Total Moisture Content @ 100°C
5011	TPHFIDUS	As Received	Determination of nexane/acetone extractable Hydrocarbons in soil
Cail			with GCFID detection.
501	IPHUSSI	AS Received	Determination of nexane/acetone extractable Hydrocarbons in soil
			With GCFID detection including quantitation of Aromatic and
Cail		Over Dried	Aliphatic fractions.
501	VV SLIVIS9		direction followed by high temperature combustion and ID
		w < 35°C	detection
Weter			UELECTION
vvaler		AS RECEIVED	ICPMS

Method Descriptions

Matrix	MethodID	Analysis	Method Description
		Basis	
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using ICPOES
Water	ISEF	As Received	Determination of Fluoride in water samples by Ion Selective Electrode (ISE)
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis
Water	SFAPI	As Received	Segmented flow analysis with colorimetric detection
Water	WSLM13	As Received	Instrumental analysis using acid/persulphate digestion and non- dispersive IR detection
Water	WSLM2	As Received	Determination of the Electrical Conductivity (µS/cm) by electrical conductivity probe.
Water	WSLM27	As Received	Gravimetric Determination
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l **Nil**: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/I

Asbestos Analysis

CH Denotes ChrysotileTR Denotes TremoliteCR Denotes CrocidoliteAC Denotes ActinoliteAM Denotes AmositeAN Denotes AnthophyliteNAIIS No Asbestos Identified in SampleNADIS No Asbestos Detected In Sample

Symbol Reference

^ Sub-contracted analysis.

\$\$ Unable to analyse due to the nature of the sample

- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.
- This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

¥ Results for guidance only due to possible interference

& Blank corrected result

I.S Insufficient sample to complete requested analysis

I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

P Raised detection limit due to nature of the sample

* All accreditation has been removed by the laboratory for this result

‡ MCERTS accreditation has been removed for this result

§ accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Sample Descriptions

Client	1
Site :	

Causeway Geotech Ltd Avoca River Sediment Sampling

S18_1264

Report Number :

Note: major constituent in upper case

Lab ID Number	Client ID	Description
CL/1786240	BH01 0.10	MARINE SEDIMENTS
CI /1786241	BH01 1 00	MARINE SEDIMENTS
CL/1786242	BH02.0.50	MARINE SEDIMENTS
CL/1786243	BH02 1 50	MARINE SEDIMENTS
CL/1796243	BH02 0.50	MADINE CEDIMENTS
CL/1780244	DI 103 0.50	
CL/1786245	BH03 1.50	MARINE SEDIMENTS
CL/1786246	BH03 2.50	MARINE SEDIMENTS
CL/1786247	BH04 0.50	MARINE SEDIMENTS
CL/1786248	BH04 1.50	MARINE SEDIMENTS
CL/1786249	BH04 2.50	MARINE SEDIMENTS
CL/1786250	BH05 0.50	MARINE SEDIMENTS
CL/1786251	BH05 1.00	MARINE SEDIMENTS
CL/1786252	BH05 2.00	MARINE SEDIMENTS
CL/1786253	BH05 3.00	MARINE SEDIMENTS
CI /1786254	BH06.0.50	MARINE SEDIMENTS
CL/1786255	BH06 1 00	MABINE SEDIMENTS
CL/1786256	BH06 2 00	
CL/1700230	BH06 2.00	
CL/1700257	DH00 3.00	MARINE SEDIMENTS
CL/1786258	BH07 1.00	
CL/1786259	BH07 2.00	MARINE SEDIMENTS
CL/1786260	BH08 1.00	MARINE SEDIMENTS
CL/1786261	BH08 2.00	MARINE SEDIMENTS
CL/1786262	BH09 0.50	MARINE SEDIMENTS
CL/1786263	BH09 2.00	MARINE SEDIMENTS
CL/1786264	CRM	QUALITY CONTROL SAMPLE
CL/1786265	QC Blank	QUALITY CONTROL SAMPLE
CL/1786266	Reference Material (% Recovery)	QUALITY CONTROL SAMPLE
	1	

Our Ref: EFS/181264 (Ver. 3) Your Ref: 17-0906

January 11, 2018

Environmental Chemistry SOCOTEC UK Limited Bretby Business Park Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

Neil Haggan Causeway Geotech Ltd 8 Drumahiskey Road Ballymoney United Kingdom BT53 7QL

For the attention of Neil Haggan

Dear Neil Haggan

Sample Analysis - Avoca River Sediment Sampling

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

Where appropriate the samples will be kept until 16/01/18 when they will be discarded. Please call 01283 554547 for an extension of this date. Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with SOCOTEC UK Limited (Multi-Sector Services) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for SOCOTEC UK Limited

JACOLDOVINE

J Colbourne Project Co-ordinator 01283 554547

TEST REPORT

Report No. EFS/181264 (Ver. 3)

Causeway Geotech Ltd 8 Drumahiskey Road Ballymoney United Kingdom BT53 7QL

Site: Avoca River Sediment Sampling

The 7 samples described in this report were registered for analysis by SOCOTEC UK Limited on 05-Dec-2017. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 11-Jan-2018

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Pages 2 to 3) Table of PAH (MS-SIM) (80) Results (Pages 4 to 9) Table of PCB Congener Results (Pages 10 to 13) Subcontracted Analysis Reports (Pages 14 to 15) *The accreditation status of subcontracted analysis is displayed on the appended subcontracted analysis reports.* Table of Asbestos Screening Results (Pages 16 to 17) Analytical and Deviating Sample Overview (Pages 18 to 21) Table of Additional Report Notes (Page 22) Table of Method Descriptions (Page 23) Table of Report Notes (Page 24) Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of SOCOTEC UK Lim (Tim Barnes

Operations Director Energy & Waste Services

Date of Issue: 11-Jan-2018

Tests marked ${}^{\prime}\!{}^{\prime}$ have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected. SOCOTEC UK Limited accepts no responsibility for any sampling not carried out by our personnel.

	Matha	Units :	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	%	%	mg/kg	mg/kg	% M/M		
	Method Reportin	a Coaes : a Limits :	0.5	0.5	0.04	0.5	0.5	0.015	0.5	2	SUD002	0.2	10	10	0.02		
	UKAS Ac	credited :	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
LAB ID Number CL/	Client Sample Description	Sample Date	Copper (MS) Sediment	Arsenic (MS) Sediments	Cadmium (MS) Sediments	Chromium (MS) Sediments	Lead (MS) Sediments	Mercury (MS) Sediments	Nickel (MS) Sediments	Zinc (MS) Sediments	^Asbestos Screen & ID (Stage 1)	Dry Matter %	TPH Band (>C10-C40)	TPH by GCFID (AR)	Total Organic Carbon		
1786242	BH02 0.50	08-Nov-17	40.9	13.1	0.17	17	34.7	<0.015	14.5	108.1	NAIIS	94.0 §	54 §	54 §	0.13		
1786244	BH03 0.50	08-Nov-17	39.6	18.3	0.14	21.8	42.3	<0.015	18.6	104.9	NAIIS	91.9 §	25 §	25 §	0.18		
1786250	BH05 0.50	09-Nov-17	33.9	13.6	0.1	18.7	26.2	<0.015	14.7	107.5	NAIIS	95.6 §	<10 §	<10 §	0.48		
1786262	BH09 0.50	10-Nov-17	38.7	15.3	0.24	21.3	37.4	<0.015	15.6	114	NAIIS	94.6 §	23 §	24 §	0.22		
1786264	CRM	10-Nov-17	56.68	18.05	1.507	60.34	78.95	0.723	32.27	316.1					3.1905		
1786265	QC Blank		<0.5 §	<0.5 §	<0.04 §	<0.5 §	<0.5 §	<0.015 §	<0.5 §	<2 §			<10 §	<10 §	<0.02 §		
1786266	Reference Material (% Recovery)		97 §	97 §	105 §	104 §	102 §	100 §	102 §	102 §			97 §	97 §	101 §		
				Client Name Causeway Geotech Ltd Sample Analysis Contact Neil Haggan									llysis				
	Bretby Business Park, Ashby Road										Date Prin	nted		22-	Dec-2017		
	Burton-on-Trent, Staffordshire, DE15 0YZ		Avoca River Sediment Sampling								Report Number EFS/181264						
	Tel +44 (0) 1283 554400			Table Number 1													
	Fax +44 (0) 1283 554422																

		Units :	%	mg/kg	ug Sn/kg	ug Sn/kg	ug Sn/kg	µg/kg	µg/kg	%	mg/kg	mg/kg						
	Metho	d Codes :	ANC	ICPMSS	OGSNSED	OGSNSED	OGSNSED	PCBMS3Q	PCBECD	Sub061	SVOCMSUS	PAHMSUS						
	Method Reportin	ng Limits :	0.12	0.5	1	1	1	0.08	0.08		0.1							
	UKAS Ad	credited :	No	No	No	No	No	No	No		No	Yes						
LAB ID Number CL/	Client Sample Description	Sample Date	Carbonate %	Tin (MS) Sediment	Dibutyl Tin (Sediments)	Tributyl Tin (Sediments)	Triphenyl Tin(Sediments)	Organochlorine Pesticides (Marine Sediments)	PCB-7 Congeners Analysis	^Particle Size Analysis (Sediment)	Hexachlorobutadiene	PAH (17) by GCMS						
1786242	BH02 0.50	08-Nov-17	2.16	<0.5	<1	<1	<1	Req	Req	Req	Req	Req §						
1786244	BH03 0.50	08-Nov-17	1.20	<0.5	<1	<1	<1	Req	Req	Req	Req	Req §						
1786250	BH05 0.50	09-Nov-17	2.64	<0.5	<1	<1	<1	Req	Req	Req	Req	Req §						
1786262	BH09 0.50	10-Nov-17	2.40	<0.5	<1	<1	<1	Req	Req	Req	Req	Req §						
1786264	CRM	10-Nov-17			93	71	81	Req	Req	Req								
1786265	QC Blank			<0.5	<1	<1	<1	Req	Req		Req	Req §						
1786266	Reference Material (% Recovery)		102.6		78	82	98	Req	Req		Req	Req §						
		Client N Contact	Client Name Causeway Geotech Ltd Contact Neil Haggan									Sam	ple Ana	alysis				
	Bretby Business Park, Ashby Road											Date Prin	ted		22-	Dec-2017		
	Burton-on-Trent, Staffordshire, DE15 0YZ			٨٠		ivor 9	Sodim	ont C	amnli	ina		Report Number				EFS/181264		
	Tel +44 (0) 1283 554400			Avoca Miver Seuthent Sampling									Table Number 1					
	Fax +44 (0) 1283 554422																	

Polycyclic Aromatic Hydrocarbons GC/MS (SIM)

Causeway Geotech Lt	d: Avoca River Sediment S	ampling
BH02 0.50	Job Number:	s18_
CL1786242	Date Booked in:	05-E
171346	Date Extracted:	15-E
Initial Calibration	Date Analysed:	15-E
121517.MS17\	Matrix:	Soil
1.0	Ext Method:	Ultra
	Causeway Geotech Lt BH02 0.50 CL1786242 171346 Initial Calibration 121517.MS17\ 1.0	Causeway Geotech Ltd: Avoca River Sediment SBH02 0.50Job Number:CL1786242Date Booked in:171346Date Extracted:Initial CalibrationDate Analysed:121517.MS17\Matrix:1.0Ext Method:

UKAS accredited?: No

Target Compounds	CAS #	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

* Denotes compound is not UKAS accredited "M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	110
Acenaphthene-d10	111
Phenanthrene-d10	111
Chrysene-d12	114
Perylene-d12	109

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	97
Terphenyl-d14	80

s18_1264

05-Dec-17

15-Dec-17

15-Dec-17

Ultrasonic

Soil

Concentrations are reported on a wet weight basis.

The Total PAH result is the sum of non-rounded individual PAH results and therefore may differ to the sum of the rounded individual PAH results printed above. By convention, where any one or more result is a "less than", the total is expressed as a "less than" and includes the "less than" concentration within the total.

Polycyclic Aromatic Hydrocarbons GC/MS (SIM)

Customer and Site Details:	Causev
Sample Details:	BH03 0
LIMS ID Number:	CL1786
QC Batch Number:	171346
Quantitation File:	Initial C
Directory:	121517
Dilution:	1.0

).50 6244 alibration '.MS17\

way Geotech Ltd: Avoca River Sediment Sampling Job Number: s18_1264 Date Booked in: 05-Dec-17 Date Extracted: 15-Dec-17 Date Analysed: 15-Dec-17 Matrix: Soil Ext Method: Ultrasonic

UKAS accredited?: No

Target Compounds	CAS #	R.T.	Concentration	% Fit
	04.00.0	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	iiig/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

* Denotes compound is not UKAS accredited "M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	108
Acenaphthene-d10	110
Phenanthrene-d10	110
Chrysene-d12	111
Perylene-d12	104

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	100
Terphenyl-d14	82

Concentrations are reported on a wet weight basis.

The Total PAH result is the sum of non-rounded individual PAH results and therefore may differ to the sum of the rounded individual PAH results printed above. By convention, where any one or more result is a "less than", the total is expressed as a "less than" and includes the "less than" concentration within the total.

Polycyclic Aromatic Hydrocarbons GC/MS (SIM)

Customer and Site Details:	Caus
Sample Details:	BH0
LIMS ID Number:	CL17
QC Batch Number:	1713
Quantitation File:	Initia
Directory:	1215
Dilution:	1.0

5 0.50 786250 346 al Calibration 517.MS17

seway Geotech Ltd: Avoca River Sediment Sampling Job Number: s18_1264 Date Booked in: 05-Dec-17 Date Extracted: 15-Dec-17 Date Analysed: 15-Dec-17 Matrix: Soil Ext Method: Ultrasonic

UKAS accredited?: No

Target Compounds	CAS #	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

* Denotes compound is not UKAS accredited "M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	109
Acenaphthene-d10	110
Phenanthrene-d10	112
Chrysene-d12	118
Perylene-d12	110

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	94
Terphenyl-d14	78

Concentrations are reported on a wet weight basis.

The Total PAH result is the sum of non-rounded individual PAH results and therefore may differ to the sum of the rounded individual PAH results printed above. By convention, where any one or more result is a "less than", the total is expressed as a "less than" and includes the "less than" concentration within the total.
Polycyclic Aromatic Hydrocarbons GC/MS (SIM)

Causeway Geotech Ltd: Avoca River Sediment Sampling		
BH09 0.50	Job Number:	s18_
CL1786262	Date Booked in:	05-E
171347	Date Extracted:	15-E
Initial Calibration	Date Analysed:	16-E
121517.MS17\	Matrix:	Soil
1.0	Ext Method:	Ultra
	Causeway Geotech Lt BH09 0.50 CL1786262 171347 Initial Calibration 121517.MS17\ 1.0	Causeway Geotech Ltd: Avoca River Sediment SBH09 0.50Job Number:CL1786262Date Booked in:171347Date Extracted:Initial CalibrationDate Analysed:121517.MS17\Matrix:1.0Ext Method:

UKAS accredited?: No

Target Compounds	CAS #	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

* Denotes compound is not UKAS accredited "M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	107
Acenaphthene-d10	107
Phenanthrene-d10	107
Chrysene-d12	103
Perylene-d12	93

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	92
Terphenyl-d14	74

s18_1264

05-Dec-17

15-Dec-17

16-Dec-17

Ultrasonic

Soil

Concentrations are reported on a wet weight basis.

The Total PAH result is the sum of non-rounded individual PAH results and therefore may differ to the sum of the rounded individual PAH results printed above. By convention, where any one or more result is a "less than", the total is expressed as a "less than" and includes the "less than" concentration within the total.

Polycyclic Aromatic Hydrocarbons GC/MS (SIM)

Customer and Site Details:	Causeway Geotech Ltd: Avoca River Sediment Sampling		
Sample Details:	QC Blank	Job Number:	s18_1264
LIMS ID Number:	CL1786265	Date Booked in:	05-Dec-17
QC Batch Number:	171347	Date Extracted:	15-Dec-17
Quantitation File:	Initial Calibration	Date Analysed:	15-Dec-17
Directory:	121517.MS17\	Matrix:	Soil
Dilution:	1.0	Ext Method:	Ultrasonic

UKAS accredited?: No

Target Compounds	CAS #	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

* Denotes compound is not UKAS accredited "M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	106
Acenaphthene-d10	108
Phenanthrene-d10	108
Chrysene-d12	111
Perylene-d12	104

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	106
Terphenyl-d14	86

Concentrations are reported on a wet weight basis.

The Total PAH result is the sum of non-rounded individual PAH results and therefore may differ to the sum of the rounded individual PAH results printed above. By convention, where any one or more result is a "less than", the total is expressed as a "less than" and includes the "less than" concentration within the total.

Polycyclic Aromatic Hydrocarbons GC/MS (SIM)

Customer and Site Details:	Causeway Geotech Ltd: Avoc	a River Sediment Samp	oling
Sample Details:	Reference Material (% Recovery)	Job Number:	S18_1264
LIMS ID Number:	CL1786266	Date Booked in:	05-Dec-17
QC Batch Number:	171347	Date Extracted:	15-Dec-17
Quantitation File:	Initial Calibration	Date Analysed:	15-Dec-17
Directory:	121517.MS17\	Matrix:	Soil
Dilution:	1.0	Ext Method:	Ultrasonic

UKAS accredited?: No

Target Compounds	CAS #	R.T.	Recovery	% Fit
		(min)	%	
Naphthalene	91-20-3	2.99	99	99
Acenaphthylene	208-96-8	4.03	99	99
Acenaphthene	83-32-9	4.14	101	96
Fluorene	86-73-7	4.50	99	95
Phenanthrene	85-01-8	5.28	98	99
Anthracene	120-12-7	5.33	98	99
Fluoranthene	206-44-0	6.56	99	91
Pyrene	129-00-0	6.83	99	90
Benzo[a]anthracene	56-55-3	8.48	95	99
Chrysene	218-01-9	8.53	101	99
Benzo[b]fluoranthene	205-99-2	9.99	91	96
Benzo[k]fluoranthene	207-08-9	10.02	96	97
Benzo[a]pyrene	50-32-8	10.41	98	96
Indeno[1,2,3-cd]pyrene	193-39-5	11.78	97	89
Dibenzo[a,h]anthracene	53-70-3	11.81	104	96
Benzo[g,h,i]perylene	191-24-2	12.06	97	94
Coronene	191-07-1	13.90	80	77
Total (USEPA16) PAHs	-	-	103	-

* Denotes compound is not UKAS accredited "M" denotes that % fit has been manually interpreted

Internal Standards	% Area	
1,4-Dichlorobenzene-d4	NA	
Naphthalene-d8	-	
Acenaphthene-d10 -		
Phenanthrene-d10 -		
Chrysene-d12 -		
Perylene-d12 -		

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	-
Terphenyl-d14	-

Concentrations are reported on a wet weight basis.

The Total PAH result is the sum of non-rounded individual PAH results and therefore may differ to the sum of the rounded individual PAH results printed above. By convention, where any one or more result is a "less than", the total is expressed as a "less than" and includes the "less than" concentration within the total.

Polychlorinated Biphenyls (congeners)

Customer and Site Details:	Causeway Geotech Ltd: Avoca River Sediment Samplir	g	Matrix:	Soil
Job Number:	S18_1264		Date Booked in:	05-Dec-17
QC Batch Number:	170019		Date Extracted:	16-Dec-17
Directory:	181217PCB.TQ1		Date Analysed:	18-Dec-17
Method:	Ultrasonic			
	Compounds m	arked * are not UKAS or	MCorts accredited	

Compounds marked * are not UKAS or MCerts accredited

				Con	centration,	(µg/kg)		
Sample ID	Customer ID	PCB28*	PCB52*	PCB101*	PCB118*	PCB153*	PCB138*	PCB180*
CL1786242	BH02 0.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1786244	BH03 0.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1786250	BH05 0.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

Polychlorinated Biphenyls (congeners)

Customer and Site Details: Job Number: QC Batch Number: Directory: Method:	Causeway Geotech Ltd: Avoca River S S18_1264 170020 181217PCB.TQ1 Ultrasonic	Sediment Samp	Matrix: Date Booked Date Extracte Date Analyse	in: ed: d:	Soil 05-Dec-17 16-Dec-17 18-Dec-17			
		Compounds		Cor	centration	(ua/ka)		
Sample ID	Customer ID	PCB28*	PCB52*	PCB101*	PCB118*	PCB153*	PCB138*	PCB180*
CL1786262	BH09 0.50	<0.08	<0.08	< 0.08	<0.08	<0.08	<0.08	<0.08
CL1786264	CRM	2.87	4.60	4.87	3.34	4.10	4.22	2.48
CL1786265	QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1786266	Reference Material (% Recovery)	73	117	104	106	105	109	106
		-						
		+		+				

Organochlorine Pesticides

Customer and Site Details:	Causeway Geotech Ltd: Avoca River Sediment Sampling	Matrix:	Sediment
Job Number:	S18_1264	Date Booked in:	05-Dec-17
QC Batch Number:	170020	Date Extracted:	16-Dec-17
Directory:	181217.TQ1	Date Analysed:	18-Dec-17
Method:	Ultrasonic	UKAS Accredited:	No

Compounds marked *	are not UKAS or MCerts accredited
--------------------	-----------------------------------

Sample ID :	CL1786242	CL1786244	CL1786262	CL1786264	CL1786265
Client ID :	BH02 0.50	BH03 0.50	BH09 0.50	CRM	QC Blank
Compound			Concentration (µg/kg)		
alpha-HCH	<0.10	<0.10	<0.10	<0.10	<0.10
Hexachlorobenzene	<0.10	<0.10	<0.10	8.85	<0.10
gamma-HCH	<0.10	<0.10	<0.10	<0.10	<0.10
p,p'-DDE	<0.10	<0.10	<0.10	2.50	<0.10
Dieldrin	<0.10	<0.10	<0.10	0.35	<0.10
p,p'-DDD	<0.10	<0.10	<0.10	3.73	<0.10
p,p'-DDT	<0.10	<0.10	<0.10	0.19	<0.10

Organochlorine Pesticides

Customer and Site Details:	Causeway Geotech Ltd: Avoca River Sediment Sampling	Matrix:	Sediment
Job Number:	S18_1264	Date Booked in:	05-Dec-17
QC Batch Number:	170020	Date Extracted:	16-Dec-17
Directory:	181217.TQ1	Date Analysed:	18-Dec-17
Method:	Ultrasonic	UKAS Accredited:	No

Compounds marked * are not UKAS or MCerts accredited

_								
Sample ID :	CL1786266	CL1786250						
Client ID :	Reference Material (% Recovery)	BH05 0.50						
Compound		C	Concentration (µg/kg)					
alpha-HCH	89	<0.10						
Hexachlorobenzene	98	<0.10						
gamma-HCH	92	<0.10						
p,p'-DDE	83	<0.10						
Dieldrin	89	<0.10						
p,p'-DDD	90	<0.10						
p,p'-DDT	99	<0.10						

		Particle size d	istribution (%)	
Size (µm)	S1786262	S1786242	S1786244	S1786250
16000.000	0.000	27.946	0.000	0.000
11200.000	0.000	15.695	0.000	11.809
8000.000	0.000	8.207	6.776	9.961
5600.000	0.000	9.907	9.350	12.561
4000.000	0.000	4.411	9.578	9.335
2800.000	0.000	2.374	10.762	6.265
2000.000	0.000	1.656	10.675	7.382
1400.000	0.000	2.052	11.859	8.447
1000.000	0.000	2.081	9.079	6.536
707.000	0.000	3.908	9.881	7.647
500.000	0.252	5.188	10.523	8.499
354.000	1.756	5.037	5.970	5.268
250.000	3.142	5.012	2.943	3.101
177.000	3.848	3.126	1.441	1.699
125.000	4.936	1.934	0.565	0.835
88.400	5.764	1.086	0.371	0.425
62.500	6.304	0.381	0.228	0.230
44.200	7.166	0.000	0.000	0.000
31.200	8.254	0.000	0.000	0.000
22.100	8.806	0.000	0.000	0.000
15.600	8.856	0.000	0.000	0.000
11.000	8.528	0.000	0.000	0.000
7.810	7.864	0.000	0.000	0.000
5.520	7.172	0.000	0.000	0.000
3.910	6.006	0.000	0.000	0.000
2.760	4.654	0.000	0.000	0.000
1.950	2.792	0.000	0.000	0.000
1.380	1.208	0.000	0.000	0.000
0.977	0.754	0.000	0.000	0.000
0.691	1.026	0.000	0.000	0.000
0.488	0.762	0.000	0.000	0.000
0.345	0.150	0.000	0.000	0.000
0.244	0.000	0.000	0.000	0.000
0.173	0.000	0.000	0.000	0.000
0.122	0.000	0.000	0.000	0.000
0.086	0.000	0.000	0.000	0.000

Station	Client Sample Description	Treatment	Textural Group Classification	Folk and Ward Description	Folk and Ward Sorting	Mean µm	Mean phi	Sorting Coefficient	Skewness	Kurtosis	Major Se	diment Fra	actions
											% Gravel	% Sand	% Mud
S1786242	BH02 0.50	Sediment	Gravel	Very Fine Gravel	Moderately Sorted	3822.3	-1.934	0.753	3.197	0.914	80.8%	19.2%	0.0%
S1786244	BH03 0.50	Sediment	Sandy Gravel	Very Fine Gravel	Poorly Sorted	2416.9	-1.273	1.316	0.037	0.886	57.3%	42.7%	0.0%
S1786250	BH05 0.50	Sediment	Sandy Gravel	Very Fine Gravel	Poorly Sorted	3587.6	-1.843	1.560	0.234	0.815	67.5%	32.5%	0.0%
S1786262	BH09 0.50	Sediment	Sandy Mud	Coarse Silt	Very Poorly Sorted	23.25	5.426	2.143	-0.035	0.918	0.0%	26.0%	74.0%

ASBESTOS ANALYSIS RESULTS

Detection limit of Method SCI-ASB-020 is 0.001%

SOCOTEC Asbestos Limited Certificate of Analysis for Asbestos in Soils, Sediments and Aggregates

Sampling has been carried out by a third party

							1089					JOCOTEC		
Client:			SOCOTEC	Environmenta	l Chemistry					Page 1 of 2		•		
Address:			Etwall Hous	se, Bretby Bus	iness Park, A	shby Road, Burt	on upon Trent			Report No:	ANO-0503-17264			
For the atten	tion of:		Causeway Geotech Ltd								21/12/2017			
Site Address	:		Avoca River Sediment Sampling F							Project Number:	S181264			
Sample Number	Sample Date	Sample Location & Matrix	Test Date	Total Sample Dry Weight (g)	Weight of <10mm Fraction (g)	Asbestos(g) in >10mm	Asbestos(g) in < 10mm	% Asbestos by weight of Total Dried Sample	Moisture Content		Asbestos Fibre Types Identified			
CL/1786242	08/11/17	BH02 0.50 Soils	20/12/2017	1745.0	651.0			Identification			NAIIS			
CL/1786244	08/11/17	BH03 0.50 Soils	20/12/2017	1585.0	1092.6			Identification			NAIIS			
CL/1786250	09/11/17	BH05 0.50 Soils	20/12/2017	1653.0	922.6			Identification			NAIIS			
			-						-					
	-		+											
Ka		NAACR = Not Analysed a	t Clients Reques	t		NAIIS = No As	bestos Identified in Sam	bestos Identified in Sample (Identification Only)			Tom Pratt	Authorised Signatory:		
Keys * visible to nake			iked eye		NADIS = No Asbestos Detected in Sample (ID & Quant Only)					Position:	Lab Supervisor	Thes		
The sample ana using SOCOTEC fibres. All fibres	lysis for the abo C Asbestos Limi are assumed, u	ve results was carried out using the proc ted in house method of transmitted/polar unless specified, to be amphiboles. All te	edures detailed ised light micros sts were carried	in SOCOTEC As copy and centre out at SOCOTE	bestos Limited i stop dispersion C Asbestos Lab	n house method (So staining (SCI-ASB-C oratory, Ashbourne	CI-ASB-020) based on E 007), based on HSE's H House, Bretby Business	EA document Quan SG 248. The analy s Park, Ashby Road	tification of asbestos in s /sis of the < 10mm fraction d, Burton-upon-Trent, Sta	soil and associated mate on for asbestos content affordshire. DE15 0YZ,	erials - Draft 12 - February 2016. only includes ACMs and fibres ar UKAS Laboratory Number 1089.	Fibre identification was carried out ad does not discriminate non-asbestos		

ASBESTOS ANALYSIS RESULTS

Detection limit of Method SCI-ASB-020 is 0.001%

SOCOTEC Asbestos Limited Certificate of Analysis for Asbestos in Soils, Sediments and Aggregates

Sampling has been carried out by a third party

							1089					SOCOTEC		
Client:			SOCOTEC	Environmenta	l Chemistry		•	•		Page 2 of 2		·		
Address:			Etwall Hous	e, Bretby Bus	iness Park, A	shby Road, Burt	on upon Trent			Report No:	ANO-0503-17264			
For the atten	tion of:		Causeway (Geotech Ltd						Report Date:	21/12/2017			
Site Address			Avoca River Sediment Sampling							Project Number:	S181264			
Sample Number	Sample Date	Sample Location & Matrix	Test Date	Total Sample Dry Weight (g)	Weight of <10mm Fraction (g)	Asbestos(g) in >10mm	Asbestos(g) in < 10mm	% Asbestos by weight of Total Dried Sample	Moisture Content		Asbestos Fibre Types Identified			
CL/1786262	10/11/17	BH09 0.50 Soils	20/12/2017	347.2	165.4			Identification			NAIIS			
			-	1										
Ko	WG.	NAACR = Not Analysed a	t Clients Reques	t		NAIIS = No As	bestos Identified in Sam	ple (Identification C	Only)	Name:	Tom Pratt	Authorised Signatory:		
reys * visible to na		aked eye	d eye NADIS = No Asbestos Detected i				Jample (ID & Quant Only)		Position:	Lab Supervisor	The			
The sample ana using SOCOTEC fibres. All fibres	lysis for the abo C Asbestos Limi are assumed, u	we results was carried out using the proc ted in house method of transmitted/polar unless specified, to be amphiboles. All te	edures detailed ised light micros ests were carried	in SOCOTEC As copy and centre out at SOCOTE	bestos Limited i stop dispersion C Asbestos Lab	n house method (So staining (SCI-ASB-C oratory, Ashbourne	CI-ASB-020) based on f 007), based on HSE's H House, Bretby Busines	EA document Quan SG 248. The analy s Park, Ashby Road	tification of asbestos in s ysis of the < 10mm fracti d, Burton-upon-Trent, Sta	soil and associated mate on for asbestos content affordshire. DE15 0YZ,	erials - Draft 12 - February 2016. only includes ACMs and fibres an UKAS Laboratory Number 1089.	Fibre identification was carried out ad does not discriminate non-asbestos		

Customer

SOCOTEC UK Ltd Environmental Chemistry Analytical and Deviating Sample Overview

Consignment No S_NonCon Date Logged 05-Dec-2017

Site **Avoca River Sediment Sampling Report No** S181264

Causeway Geotech Ltd

In-House Report Due 27-Dec-2017

Please note the results for any subcontracted analysis (identified with a '^') is likely to take up to an additional five working days.

		MethodID	ANC	CALC_CR3	CEN Leachate	CustServ	GROHSA	ICPMSS												ICPSOIL	KONECR	LOI(%MM)	OGSNSED			PAHMSUS	PCBMS3Q
ID Number	Description	Sampled	Carbonate %	Chromium (III)	CEN Leac(P)C	Report C	GRO (AA) by HSA GC-FID	Antimony (MS) Sediments	Copper (MS) Sediment	Molybdenum (MS) Sediments	Selenium (MS) Sediments	Tin (MS) Sediment	Arsenic (MS) Sediments	Cadmium (MS) Sediments	Chromium (MS) Sediments	Lead (MS) Sediments	Mercury (MS) Sediments	Nickel (MS) Sediments	Zinc (MS) Sediments	Barium. Sediment	Chromium vi:	L.O.I. % @ 450C	Dibutyl Tin (Sediments)	Tributyl Tin (Sediments)	Triphenyl Tin(Sediments)	PAH (17) by GCMS	Organochlorine Pesticides (Marine Sediments)
CL/1786240	BH01 0.10	07/11/17																									
CL/1786241	BH01 1.00	07/11/17																									
CL/1786242	BH02 0.50	08/11/17																									
CL/1786243	BH02 1.50	08/11/17																									
CL/1786244	BH03 0.50	08/11/17																									
CL/1786245	BH03 1.50	08/11/17																									
CL/1786246	BH03 2.50	08/11/17																									
CL/1786247	BH04 0.50	08/11/17																									
CL/1786240	BH04 1.50 BH04 2 50	08/11/17																									
CL/1786250	BH05 0 50	00/11/17																									
CL/1786251	BH05 1 00	09/11/17																									
CL/1786252	BH05 2.00	09/11/17																									
CL/1786253	BH05 3.00	09/11/17																									
CI /1786254	BH06.0.50	09/11/17																									

Note: We will endeavour to prioritise samples to complete analysis within	Deviating Sample Key
holding time; however any delay could result in samples becoming	A The sample was received in an inappropriate container for this analysis
deviant whilst being processed in the laboratory.	B The sample was received without the correct preservation for this analysis
	C Headspace present in the sample container
If sampling dates are missing or matrices unclassified then results will	D The sampling date was not supplied so holding time may be compromised - applicable to all analysis
not be ISO 17025 accredited. Please contact us as soon as possible to	E Sample processing did not commence within the appropriate holding time
provide missing information in order to reinstate accreditation.	F Sample processing did not commence within the appropriate handling time
	Requested Analysis Key
	Analysis Required
	Analysis dependant upon trigger result - Note: due date may be affected if triggered
	No analysis scheduled
	Analysis Subcontracted - Note: due date may vary

Where individual results are flagged see report notes for status. Page 18 of 24he integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling. EFS/181264 Ver. 3

SOCOTEC UK Ltd Environmental Chemistry Analytical and Deviating Sample Overview

CustomerCauseway Geotech LtdSiteAvoca River Sediment SamplingReport NoS181264

Consignment No S_NonCon Date Logged 05-Dec-2017

In-House Report Due 27-Dec-2017

Please note the results for any subcontracted analysis (identified with a '^') is likely to take up to an additional five working days.

		MethodID	PCBMS3Q	PHSOIL	Sub002	Sub061	SVOCMSUS		TMSS	TMSSCALC	TPHFIDUS		TPHUSSI	WSLM59
ID Number	Description	Sampled	PCB-7 Congeners (Marine Sediments)	pH units (AR)	^Asbestos Screen & ID (Stage 1)	[^] Particle Size Analysis (Sediment)	SVOC by GCMS (AR)	Hexachlorobutadiene	Tot.Moisture @ 105C	Dry Matter %	TPH Band (>C10-C40)	TPH by GCFID (AR)	TPH by GCFID (AR/Si)	Total Organic Carbon (Sediment)
CL/1786240	BH01 0 10	07/11/17												
CL/1786240	BH01 1 00	07/11/17												
CL/1786242	BH02 0 50	08/11/17												
CL/1786243	BH02 1.50	08/11/17												
CL/1786244	BH03 0.50	08/11/17												
CL/1786245	BH03 1.50	08/11/17												
CL/1786246	BH03 2.50	08/11/17					1							
CL/1786247	BH04 0.50	08/11/17					1							
CL/1786248	BH04 1.50	08/11/17						I						
CL/1786249	BH04 2.50	08/11/17												
CL/1786250	BH05 0.50	09/11/17												
CL/1786251	BH05 1.00	09/11/17												
CL/1786252	BH05 2.00	09/11/17												
CL/1786253	BH05 3.00	09/11/17												
CL/1786254	BH06 0.50	09/11/17												

Note: We will endeavour to prioritise samples to complete analysis within holding time; however any delay could result in samples becoming deviant whilst being processed in the laboratory.

If sampling dates are missing or matrices unclassified then results will not be ISO 17025 accredited. Please contact us as soon as possible to provide missing information in order to reinstate accreditation.

А	The sample was received in an inappropriate container for this analysis
в	The sample was received without the correct preservation for this analysis
С	Headspace present in the sample container
D	The sampling date was not supplied so holding time may be compromised - applicable to all analysis
Е	Sample processing did not commence within the appropriate holding time
F	Sample processing did not commence within the appropriate handling time
Rec	uested Analysis Key
	Analysis Required
	Analysis dependant upon trigger result - Note: due date may be affected if triggered
	No analysis scheduled
-	

Where individual results are flagged see report notes for status.

Page 19 of 24he integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling. EFS/181264 Ver. 3

Customer

SOCOTEC UK Ltd Environmental Chemistry Analytical and Deviating Sample Overview

Consignment No S_NonCon Date Logged 05-Dec-2017

SiteAvoca River Sediment SamplingReport No\$181264

Causeway Geotech Ltd

In-House Report Due 27-Dec-2017

Please note the results for any subcontracted analysis (identified with a '^') is likely to take up to an additional five working days.

		MethodID	ANC	CALC_CR3	CEN Leachate	CustServ	GROHSA	ICPMSS												ICPSOIL	KONECR	LOI(%MM)	OGSNSED			PAHMSUS	PCBMS3Q
ID Number	Description	Sampled	Carbonate %	Chromium (III)	CEN Leac(P)C	Report C	GRO (AA) by HSA GC-FID	Antimony (MS) Sediments	Copper (MS) Sediment	Molybdenum (MS) Sediments	Selenium (MS) Sediments	Tin (MS) Sediment	Arsenic (MS) Sediments	Cadmium (MS) Sediments	Chromium (MS) Sediments	Lead (MS) Sediments	Mercury (MS) Sediments	Nickel (MS) Sediments	Zinc (MS) Sediments	Barium. Sediment	Chromium vi:	L.O.I. % @ 450C	Dibutyl Tin (Sediments)	Tributyl Tin (Sediments)	Triphenyl Tin(Sediments)	PAH (17) by GCMS	Organochlorine Pesticides (Marine Sediments)
CL/1786255	BH06 1.00	09/11/17																									
CL/1786256	BH06 2.00	09/11/17																									
CL/1786257	BH06 3.00	09/11/17																									
CL/1786258	BH07 1.00	09/11/17																									
CL/1786259	BH07 2.00	09/11/17																									
CL/1786260	BH08 1.00	10/11/17																									
CL/1786261	BH08 2.00	10/11/17																									
CL/1786262	BH09 0.50	10/11/17																									
CL/1786263	BH09 2.00	10/11/17																									
CL/1786264	CRM	10/11/17																									
CL/1786265	QC Blank																										
CL/1786266	Reference Material (% Recovery	y)																									

Note: We will endeavour to prioritise samples to complete analysis within	Deviatir	ng Sample Key
holding time; however any delay could result in samples becoming	A Th	ne sample was received in an inappropriate container for this analysis
deviant whilst being processed in the laboratory.	B Th	ne sample was received without the correct preservation for this analysis
	C He	eadspace present in the sample container
If sampling dates are missing or matrices unclassified then results will	D Th	ne sampling date was not supplied so holding time may be compromised - applicable to all analysis
not be ISO 17025 accredited. Please contact us as soon as possible to	E Sa	ample processing did not commence within the appropriate holding time
provide missing information in order to reinstate accreditation.	F Sa	ample processing did not commence within the appropriate handling time
	Reques	ted Analysis Key
	Ar	nalysis Required
	Ar	nalysis dependant upon trigger result - Note: due date may be affected if triggered
	No	o analysis scheduled
	^ Ar	nalysis Subcontracted - Note: due date may vary

Where individual results are flagged see report notes for status.

Page 20 of 24he integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling. EFS/181264 Ver. 3

SOCOTEC UK Ltd Environmental Chemistry Analytical and Deviating Sample Overview

CustomerCauseway Geotech LtdSiteAvoca River Sediment SamplingReport NoS181264

Consignment No S_NonCon Date Logged 05-Dec-2017

In-House Report Due 27-Dec-2017

Please note the results for any subcontracted analysis (identified with a '^') is likely to take up to an additional five working days.

		MethodID	PCBMS3Q	PHSOIL	Sub002	Sub061	SVOCMSUS		TMSS	TMSSCALC	TPHFIDUS		TPHUSSI	WSLM59	
ID Number	Description	Sampled	PCB-7 Congeners (Marine Sediments)	pH units (AR)	^Asbestos Screen & ID (Stage 1)	^Particle Size Analysis (Sediment)	SVOC by GCMS (AR)	Hexachlorobutadiene	Tot.Moisture @ 105C	Dry Matter %	TPH Band (>C10-C40)	TPH by GCFID (AR)	TPH by GCFID (AR/Si)	Total Organic Carbon (Sediment)	
CL/1786255	BH06 1.00	09/11/17													
CL/1786256	BH06 2.00	09/11/17													
CL/1786257	BH06 3.00	09/11/17													
CL/1786258	BH07 1.00	09/11/17													
CL/1786259	BH07 2.00	09/11/17													
CL/1786260	BH08 1.00	10/11/17													
CL/1786261	BH08 2.00	10/11/17													
CL/1786262	BH09 0.50	10/11/17													
CL/1786263	BH09 2.00	10/11/17													
CL/1786264	CRM	10/11/17													
CL/1786265	QC Blank														
CL/1786266	Reference Material (% Recovery	()													i i

Note: We will endeavour to prioritise samples to complete analysis within holding time; however any delay could result in samples becoming deviant whilst being processed in the laboratory.

If sampling dates are missing or matrices unclassified then results will not be ISO 17025 accredited. Please contact us as soon as possible to provide missing information in order to reinstate accreditation.

A	The sample was received in an inappropriate container for this analysis
В	The sample was received without the correct preservation for this analysis
С	Headspace present in the sample container
D	The sampling date was not supplied so holding time may be compromised - applicable to all analysis
Е	Sample processing did not commence within the appropriate holding time
F	Sample processing did not commence within the appropriate handling time
Rec	uested Analysis Key
	Analysis Required
	Analysis dependant upon trigger result - Note: due date may be affected if triggered
	No analysis scheduled
	Analysis Subcontracted Nates due date may yeary

Where individual results are flagged see report notes for status.

Page 21 of 24 he integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling. EFS/181264 Ver. 3

Report Number : EFS/181264

Additional Report Notes

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report

Method Descriptions

Matrix	MethodID	Analysis	Method Description
		Basis	
Soil	ANC	Oven Dried	Quantitative digestion with Hydrochloric Acid back titration with 1M
		@ < 35°C	Sodium Hydroxide to pH 7
Soil	CALC_CR3	Oven Dried	Calculated from the difference between Total Chromium and
		@ < 35°C	Hexavalent Chromium
Soil	GROHSA	As Received	Determination of Total Gasoline Range Organics Hydrocarbons
			(GRO) by Headspace GCFID
Soil	ICPMSS	Oven Dried	Determination of Metals in Marine Sediments and Soil samples by
		@ < 35°C	aqua regia digestion followed by ICPMS detection
Soil	ICPSOIL	Oven Dried	Determination of Metals in soil samples by aqua regia digestion
		@ < 35°C	followed by ICPOES detection
Soil	KONECR	Oven Dried	Determination of Chromium vi in soil samples by water extraction
		@ < 35°C	followed by colorimetric detection
Soil	LOI(%MM)	Oven Dried	Determination of loss on ignition for soil samples at specified
		@ < 35°C	temperature by gravimetry
Soil	OGSNSED	As Received	Determination of Organo-tin compounds using sonic extraction in
			methanol, derivatiseation with Sodium Tetraethylborate and GCMS
			quantitation (SIM mode).
Soil	PAHMSUS	As Received	Determination of Polycyclic Aromatic Hydrocarbons (PAH) by
			hexane/acetone extraction followed by GCMS detection
Soil	PCBMS3Q	As Received	Determination of Polychlorinated Biphenyl (PCB) congeners by
			hexane/acetone extraction followed by GCECD detection
Soil	PHSOIL	As Received	Determination of pH of 2.5:1 deionised water to soil extracts using
			pH probe.
Soil	SubCon*	*	Contact Laboratory for details of the methodology used by the sub-
			contractor.
Soil	SVOCMSUS	As Received	Determination of Semi Volatile Organic Compounds in soil samples
			by Dichloromethane/Acetone extraction followed by GCMS
			detection
Soil	TMSS	As Received	Determination of the Total Moisture content at 105°C by loss on
			oven drying gravimetric analysis (% based upon wet weight)
Soil	TMSSCALC	As Received	Calculated from the 100 - Total Moisture Content @ 100°C
Soil	TPHFIDUS	As Received	Determination of hexane/acetone extractable Hydrocarbons in soil
			with GCFID detection.
Soil	TPHUSSI	As Received	Determination of hexane/acetone extractable Hydrocarbons in soil
			with GCFID detection including quantitation of Aromatic and
			Aliphatic fractions.
Soil	WSLM59	Oven Dried	Determination of Organic Carbon in soil using sulphurous Acid
		@ < 35°C	digestion followed by high temperature combustion and IR
			detection

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l NiI: Where "NiI" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/I

Asbestos Analysis

CH Denotes ChrysotileTR Denotes TremoliteCR Denotes CrocidoliteAC Denotes ActinoliteAM Denotes AmositeAN Denotes AnthophyliteNAIIS No Asbestos Identified in SampleNADIS No Asbestos Detected In Sample

Symbol Reference

^ Sub-contracted analysis.

\$\$ Unable to analyse due to the nature of the sample

- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.
- This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

¥ Results for guidance only due to possible interference

& Blank corrected result

I.S Insufficient sample to complete requested analysis

I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

 $\ensuremath{\text{Req}}$ Analysis requested, see attached sheets for results

P Raised detection limit due to nature of the sample

* All accreditation has been removed by the laboratory for this result

‡ MCERTS accreditation has been removed for this result

§ accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Sample Descriptions

Client :	Causeway Geotech Ltd	
Site :	Avoca River Sediment Sampling	
Boport Number -	S18 1264	
Report Number .	510_1204	Note: major constituent in upper case
Lab ID Number	Client ID	Description
CI /17962/2	BH02.0.50	MARINE SEDIMENTS
CL/1700242	BH02 0.50	
CL/1700244	BH05 0.50	
CL/1700250	BH00.0.50	
CL/1700202	CPM	
CL/1700204		
CL/1700203	Reference Material (% Recovery)	
CL/1700200	Reference Material (% Recovery)	

A3 2020 Ground Investigation

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176 Email: info@gii.ie Web: www.gii.ie

18th September 2020

Re Sampling and Laboratory Analysis Avoca River and Arklow Marsh - July 2020

To whom it may concern,

Ground Investigations Ireland were retained by Wicklow County Council to carry out groundwater, surface water and sediment sampling and analysis in Arklow, County Wicklow. The sampling was completed in July 2020 under the supervision and direction of Arup consulting engineers.

The works included:

- The collection of six sediment samples at three location from the bed of the Avoca River;
- The collection of three surface water samples from the Avoca River;
- The collection of groundwater sample from groundwater wells in the Arklow Marsh;
- The soaking of sediment samples in a controlled environment.

The sediment and surface water sampling was competed on 1st July 2020 with the groundwater samples collected on 2nd July 2020. The sampling locations are presented in the applicable Arup drawings. All analysis was completed by Element Materials Technology (EMT) in the UK; EMT is a UKAS accredited laboratory.

The sediment samples were labelled S1A, S1B, S2A, S2B, S3A and S3B. The groundwater samples were labelled GW WS-08, GW WS-09 and GW WS-13.

The sediment samples were scheduled for total pollutant content and waste acceptance criteria (WAC) analysis.

Each sample, which was prepared by the laboratory for leachate generation, was used to produce three sperate leachates for each sample. The first leachate was analysed for the full suite of WAC analysis parameters as specified in the EU Council Decision establishing criteria for the acceptance of waste at Landfills (Council Decision 2003/33/EC).

Due to exceedances of the inert criteria for several parameters the two remaining leachates for each sample were analysed for antimony, molybdenum, selenium, chloride and total dissolved solids only.

Duplicates off all samples were retained in the GII sample storage facility in individual free draining hessian sacks. The samples were soaked daily with clean potable water which allowed water to percolate through the sediment for a period of twelve days before being placed in laboratory prepared containers and dispatched to the laboratory. Each of the samples had a leachate generated for analysis. The resultant leachates were analysed for the individual parameters which had exceeded the inert WAC in the original samples tested i.e. antimony, molybdenum, selenium, chloride and total dissolved solids.

All analytical data was forward to Arup for interpretation.

Best Regards,

Bany Soften

Barry Sexton

Issue :

Element Materials Technology Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA P: +44 (0) 1244 833780 F: +44 (0) 1244 833781

W: www.element.com

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland ac-MR Barry Sexton Attention : Date : 16th July, 2020 9717-06-20 Your reference : Our reference : Test Report 20/8722 Batch 1 Schedule A Avoca River Location : Date samples received : 6th July, 2020 Status : Final report

Six samples were received for analysis on 6th July, 2020 of which six were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

1

Authorised By:

b lun

Bruce Leslie Project Manager

Please include all sections of this report if it is reproduced

Ground Investigations Ireland 9717-06-20 Avoca River Barry Sexton 20/8722

Report : Solid

EMT Sample No.	1-3	4-6	7-9	10-12	13-15	16-18					
Sample ID	S1A	S1B	S2A	S2B	S3A	S3B					
Depth									Please se	e attached n	otes for all
COC No / misc									abbrevi	ations and a	cronyms
Containers	V.I.T	V.IT	V.I.T	V.I.T	V.I.T	V.I.T					
Sampla Data	04/07/2020	04/07/2020	04/07/2020	04/07/2020	04/07/2020	04/07/2020					
Sample Date	01/07/2020	01/07/2020	01/07/2020	01/07/2020	01/07/2020	01/07/2020					
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil					1
Batch Number	1	1	1	1	1	1				Units	Method
Date of Receipt	06/07/2020	06/07/2020	06/07/2020	06/07/2020	06/07/2020	06/07/2020			LOBILOIT	onno	No.
Antimony	2	1	3	2	10	7			<1	mg/kg	TM30/PM15
Arsenic [#]	9.1	9.4	28.7	7.4	204.6	164.1			<0.5	mg/kg	TM30/PM15
Barium [#]	31	33	77	13	43	116			<1	mg/kg	TM30/PM15
Cadmium [#]	0.2	<0.1	<0.1	<0.1	2.3	4.5			<0.1	mg/kg	TM30/PM15
Chromium [#]	109.3	81.2	175.6	135.4	86.0	94.9			<0.5	mg/kg	TM30/PM15
Copper [#]	53	38	136	37	2376 _{AA}	2243 _{AA}			<1	mg/kg	TM30/PM15
Lead [#]	36	19	44	39	383	305			<5	mg/kg	TM30/PM15
Mercury #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			<0.1	mg/kg	TM30/PM15
Molybdenum #	3.5	3.9	5.7	10.4	18.6	16.4			<0.1	mg/kg	TM30/PM15
Nickel [#]	30.9	36.2	52.4	10.3	12.0	18.4			<0.7	mg/kg	TM30/PM15
Selenium *	<1	1	<1	<1	3	3			<1	mg/kg	TM30/PM15
Zinc"	197	115	159	52	1118	1426			<5	mg/kg	TM30/PM15
PAH MS											
Naphthalene [#]	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04			<0.04	mg/kg	TM4/PM8
Acenaphthylene	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	<0.03			<0.03	mg/kg	TM4/PM8
Acenaphthene #	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05			<0.05	mg/kg	TM4/PM8
Fluorene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04			<0.04	mg/kg	TM4/PM8
Phenanthrene [#]	<0.03	<0.03	<0.03	0.05	<0.03	0.17			<0.03	mg/kg	TM4/PM8
Anthracene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04			<0.04	mg/kg	TM4/PM8
Fluoranthene [#]	0.29	<0.03	<0.03	0.10	0.13	0.30			<0.03	mg/kg	TM4/PM8
Pyrene #	0.24	<0.03	<0.03	0.09	0.14	0.25			<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene #	0.18	<0.06	<0.06	<0.06	0.08	0.12			<0.06	mg/kg	TM4/PM8
Chrysene [#]	0.15	<0.02	<0.02	0.05	0.07	0.14			<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #	0.26	<0.07	<0.07	0.09	0.12	0.25			<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene [#]	0.13	<0.04	<0.04	0.05	0.06	0.12			<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene	0.08	<0.04	<0.04	<0.04	<0.04	0.09			<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04			<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene #	0.08	<0.04	<0.04	<0.04	0.05	0.09			<0.04	mg/kg	TM4/PM8
Coronene #	< 0.04	<0.04	<0.04	< 0.04	<0.04	<0.04			<0.04	mg/kg	TM4/PM8
PAH 6 Total "	0.84	<0.22	<0.22	0.24	0.36	0.85			<0.22	mg/kg	TM4/PM8
PAH 17 Total	1.41	<0.64	<0.64	<0.64	0.65	1.53			<0.64	mg/kg	TM4/PM8
Benzo(b)liuoranthene	0.19	<0.05	<0.05	0.00	0.09	0.18			<0.05	mg/kg	
Benzo(k)iluoranthene	0.07	<0.02	<0.02	0.03	0.03	0.07			<0.02	mg/kg	
PAH Surrogate % Recovery	00	97	100	97	97	100			<0	тту/ку %	
i fullogate in Receivery	00		100	01	01	100			-0	,,,	
Mineral Oil (C10-C40)	<30	<30	<30	<30	557	612			<30	mg/kg	TM5/PM8/PM16

Ground Investigations Ireland 9717-06-20 Avoca River Barry Sexton 20/8722

Report : Solid

						-						
EMT Sample No.	1-3	4-6	7-9	10-12	13-15	16-18						
Sample ID	S1A	S1B	S2A	S2B	S3A	S3B						
Depth										Please se	e attached n	otes for all
COC No / misc										abbrevi	ations and a	cronyms
Containers	VIT	VIT	VIT	VIT	VIT	VIT						
Containers	VJI	VJI	VJI	VJI	VJI	VJI						
Sample Date	01/07/2020	01/07/2020	01/07/2020	01/07/2020	01/07/2020	01/07/2020						
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil						
Batch Number	1	1	1	1	1	1						Method
Date of Receipt	06/07/2020	06/07/2020	06/07/2020	06/07/2020	06/07/2020	06/07/2020				LOD/LOR	Units	No.
TPH CWG												
Aliphatics												
>C5-C6 #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>C6-C8 #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>C8-C10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>C10-C12#	<0.2	<0.2	<0.2	<0.2	11.8	12.0				<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 [#]	<4	<4	<4	<4	75	84				<4	mg/kg	TM5/PM8/PM16
>C16-C21#	<7	<7	<7	<7	125	138				<7	mg/kg	TM5/PM8/PM16
>C21-C35#	<7	<7	<7	<7	308	339				<7	mg/kg	TM5/PM8/PM16
>C35-C40	<7	<7	<7	<7	37	39				<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-40	<26	<26	<26	<26	557	612				<26	mg/kg	TM5/TM36/PM8/PM12/PM1
>C6-C10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>C10-C25	<10	<10	<10	<10	309	352				<10	mg/kg	TM5/PM8/PM16
>C25-C35	<10	<10	<10	<10	198	219				<10	mg/kg	TM5/PM8/PM16
Aromatics												
>C5-EC7 #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>EC7-EC8#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>EC8-EC10 [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>EC10-EC12#	<0.2	<0.2	<0.2	<0.2	<0.2	3.0				<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16#	<4	<4	<4	<4	26	37				<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 #	<7	<7	<7	<7	95	120				<7	mg/kg	TM5/PM8/PM16
>EC21-EC35#	<7	<7	<7	<7	232	294				<7	mg/kg	TM5/PM8/PM16
>EC35-EC40	<7	<7	<7	<7	41	58				<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-40	<26	<26	<26	<26	394	512				<26	mg/kg	TM5/TM36/PM8/PM12/PM1
Total aliphatics and aromatics(C5-40)	<52	<52	<52	<52	951	1124				<52	mg/kg	TM5/TM36/PM8/PM12/PM1
>EC6-EC10#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>EC10-EC25	<10	<10	<10	<10	204	272				<10	mg/kg	TM5/PM8/PM16
>EC25-EC35	<10	<10	<10	<10	161	195				<10	mg/kg	TM5/PM8/PM16
	-	-	-	-	-	-				-		THOOTO
MIBE"	<5	<5	<5	<5	<5	<5				<5	ug/kg	1M36/PM12
Benzene"	<5	<5	<5	<5	<5	<5				<5	ug/kg	TM36/PM12
Toluene"	<5	<5	<5	<5	<5	14				<5	ug/kg	TM36/PM12
Ethylbenzene "	<5	<5	<5	<5	<5	<5				<5	ug/kg	TM36/PM12
m/p-Xylene "	<5	<5	<5	<5	<5	<5				<5	ug/kg	TM36/PM12
o-Xylene "	<5	<5	<5	<5	<5	<5				<5	ug/kg	11036/P1012
DCP 29 #	<5	< ⁵	<5	<5	<5	<5				<5	ug/kg	TM17/DM49
PCB 20	~5	~5	~5	~5	~5	~5				~5	ug/kg	TM17/DM9
P CB 32	~5	~5	~5	~5	~5	~5				~5	ug/kg	TM17/DM9
	~0	~0	~0	~0	~0	~0				~0	ug/kg	TM17/DM9
PCB 139 [#]	~5	~5	~5	~5	~5	~5				~5	ug/kg	TM17/DM9
PCB 153 [#]	<5	<5	<5	<5	<5	<5				<5	ug/kg	TM17/PM9
PCB 180 [#]	<5	<5	<5	<5	<5	<5				<5	ug/kg	TM17/PM9
Total 7 PCBs [#]	<35	<35	<35	<35	<35	<35				<35	ug/kg	TM17/PM8
									1		~9/19	

Ground Investigations Ireland 9717-06-20 Avoca River Barry Sexton 20/8722

Report : Solid

	LOIOTEE										
EMT Sample No.	1-3	4-6	7-9	10-12	13-15	16-18					
Sample ID	S1A	S1B	S2A	S2B	S3A	S3B					
Depth									Please se	e attached n	otes for all
COC No / misc									abbrevi	ations and a	cronyms
Containers	VJT	VJT	VJT	VJT	VJT	VJT					
Sample Date	01/07/2020	01/07/2020	01/07/2020	01/07/2020	01/07/2020	01/07/2020					
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil					
Batch Number	1	1	1	1	1	1					Mothod
Date of Receipt	06/07/2020	06/07/2020	06/07/2020	06/07/2020	06/07/2020	06/07/2020			LOD/LOR	Units	No.
Natural Moisture Content	17.5	14.7	31.9	22.5	17.0	55.6			<0.1	%	PM4/PM0
Moisture Content (% Wet Weight)	14.9	12.8	24.2	18.4	14.6	35.7			<0.1	%	PM4/PM0
											TH (0.0 / D) (0.0
Hexavalent Chromium *	<0.3	<0.3	< 0.3	<0.3	<0.3	<0.3			<0.3	mg/kg	1M38/PM20
	103.5	01.2	175.0	100.4	00.0	34.3			-0.5	ilig/kg	NONEMONE
Total Organic Carbon [#]	0.22	0.11	0.75	1.38	1.77	2.01			<0.02	%	TM21/PM24
рН#	7.68	7.72	7.04	7.38	7.52	7.54			<0.01	pH units	TM73/PM11
Mass of raw test portion	0.1044	0.1032	0.1242	0.1066	0.1032	0.092				kg	NONE/PM17
Mass of dried test portion	0.09	0.09	0.09	0.09	0.09	0.09				kg	NONE/PM17
		1	1	1	1	1		1	1	1	

Ground Investigations Ireland 9717-06-20 Avoca River Barry Sexton 20/8722

Report : CEN 10:1 1 Batch

EMT Sample No.	1-3	4-6	7-9	10-12	13-15	16-18					
Sample ID	S1A	S1B	S2A	S2B	S3A	S3B					
Depth									Please se	e attached n	otes for all
COC No / misc									abbrevi	ations and a	cronyms
Containers	VIT	VIT	VIT	VIT	VIT	VIT					
	• • •	• • •	• • •	• • • •	• • • •	• • • •					
Sample Date	01/07/2020	01/07/2020	01/07/2020	01/07/2020	01/07/2020	01/07/2020					
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil					
Batch Number	1	1	1	1	1	1				Linito	Method
Date of Receipt	06/07/2020	06/07/2020	06/07/2020	06/07/2020	06/07/2020	06/07/2020			LOD/LOR	Units	No.
Dissolved Antimony#	0.005	0.002	0.011	<0.002	0.006	0.008	 		<0.002	mg/l	TM30/PM17
Dissolved Antimony (A10)#	0.05	0.02	0.11	<0.02	0.06	0.08			<0.02	mg/kg	TM30/PM17
Dissolved Arsenic [#]	0.0060	<0.0025	0.0116	<0.0025	0.0049	0.0377			<0.0025	mg/l	TM30/PM17
Dissolved Arsenic (A10)#	0.060	<0.025	0.116	<0.025	0.049	0.377			<0.025	mg/kg	TM30/PM17
Dissolved Barium [#]	<0.003	<0.003	<0.003	0.005	0.003	0.004			<0.003	mg/l	TM30/PM17
Dissolved Barium (A10)#	<0.03	<0.03	<0.03	0.05	0.03	0.04			<0.03	mg/kg	TM30/PM17
Dissolved Cadmium [#]	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			<0.0005	mg/l	TM30/PM17
Dissolved Cadmium (A10)#	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			<0.005	mg/kg	TM30/PM17
Dissolved Chromium [#]	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	0.0018			<0.0015	mg/l	TM30/PM17
Dissolved Chromium (A10)#	<0.015	<0.015	<0.015	<0.015	<0.015	0.018			<0.015	mg/kg	TM30/PM17
Dissolved Copper [#]	<0.007	<0.007	<0.007	<0.007	<0.007	0.011			<0.007	mg/l	TM30/PM17
Dissolved Copper (A10) [#]	<0.07	<0.07	<0.07	<0.07	<0.07	0.11			<0.07	mg/kg	TM30/PM17
Dissolved Lead [#]	<0.005	<0.005	<0.005	<0.005	0.008	0.009			<0.005	mg/l	TM30/PM17
Dissolved Lead (A10) [#]	< 0.05	< 0.05	< 0.05	<0.05	0.08	0.09			<0.05	mg/kg	TM30/PM17
Dissolved Molybdenum#	0.008	0.002	0.003	<0.002	0.003	0.081			<0.002	mg/l	TM30/PM17
Dissolved Molvbdenum (A10) [#]	0.08	0.02	0.03	<0.02	0.03	0.81			<0.02	mg/kg	TM30/PM17
Dissolved Nickel [#]	< 0.002	<0.002	0.003	<0.002	<0.002	<0.002			<0.002	mg/l	TM30/PM17
Dissolved Nickel (A10) [#]	<0.02	<0.02	0.03	<0.02	<0.02	<0.02			<0.02	mg/kg	TM30/PM17
Dissolved Selenium [#]	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003			< 0.003	mg/l	TM30/PM17
Dissolved Selenium (A10) [#]	< 0.03	< 0.03	< 0.03	<0.03	<0.03	<0.03			< 0.03	mg/kg	TM30/PM17
Dissolved Zinc [#]	0.006	0.003	0.005	0.030	0.022	0.009			<0.003	mg/l	TM30/PM17
Dissolved Zinc (A10)#	0.06	0.03	0.05	0.30	0.22	0.09			< 0.03	mg/kg	TM30/PM17
Mercury Dissolved by CVAF#	<0.00001	<0.00001	<0.00001	<0.00001	< 0.00001	< 0.00001			<0.00001	mg/l	TM61/PM0
Mercury Dissolved by CVAF [#]	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001			<0.0001	mg/kg	TM61/PM0
Phenol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			<0.01	mg/l	TM26/PM0
Phenol	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			<0.1	mg/kg	TM26/PM0
Fluoride	<0.3	<0.3	<0.3	<0.3	<0.3	0.8			<0.3	mg/l	TM173/PM0
Fluoride	<3	<3	<3	<3	<3	8			<3	mg/kg	TM173/PM0
Sulphate as SO4 #	36.1	53.0	49.0	10.5	17.2	17.5			<0.5	mg/l	TM38/PM0
Sulphate as SO4 #	361	530	490	105	172	175			<5	mg/kg	TM38/PM0
Chloride #	23.4	37.4	6.4	4.4	25.2	53.6			<0.3	mg/l	TM38/PM0
Chloride [#]	234	374	64	44	252	536			<3	mg/kg	TM38/PM0
Dissolved Organic Carbon	9	<2	5	2	3	13			<2	mg/l	TM60/PM0
Dissolved Organic Carbon	90	<20	50	<20	30	130			<20	mg/kg	TM60/PM0
pН	9.02	8.06	7.84	7.89	7.80	7.89			<0.01	pH units	TM73/PM0
Total Dissolved Solids [#]	139	128	80	39	84	194			<35	mg/l	TM20/PM0
Total Dissolved Solids [#]	1390	1281	800	390	840	1939			<350	mg/kg	TM20/PM0

Client Name: Reference: Location: Contact: Ground Investigations Ireland 9717-06-20 Avoca River Barry Sexton

Report : EN12457_2

EMT Job No:	20/8722								_					
EMT Sample No.	1-3	4-6	7-9	10-12	13-15	16-18								
Sample ID	S1A	S1B	S2A	S2B	S3A	S3B								
Depth												Disease		-4 611
COC No / misc												abbrev	iations and a	cronyms
Containers	V.I.T	VIT	V.I.T	V.IT	V.IT	V.IT								
Samula Data	01/07/2020	01/07/2020	01/07/2020	01/07/2020	01/07/2020	01/07/2020								
Sample Date	01/07/2020	01/07/2020	01/07/2020	01/07/2020	01/07/2020	01/07/2020								
Sample Type	Soll	Soll	Soll	Soll	Soll	Soll							1	r –
Batch Number	1	1	1	1	1	1			Inert	Stable Non-	Hazardous	LOD LOR	Units	Method
Date of Receipt	06/07/2020	06/07/2020	06/07/2020	06/07/2020	06/07/2020	06/07/2020	_			10001110				140.
Solid Waste Analysis									-	_				
Total Organic Carbon "	0.22	0.11	0.75	1.38	1.77	2.01			3	5	6	<0.02	%	TM21/PM24
Sum of BTEX	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025			6	-	-	<0.025	mg/kg	TM36/PM12
Sum of 7 PCBs"	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035			1	-	-	<0.035	mg/kg	TM17/PM8
Mineral Oil	<30	<30	<30	<30	557	612			500	-	-	<30	mg/kg	TM5/PM8/PM16
PAH Sum of 6"	0.84	<0.22	<0.22	0.24	0.36	0.85			-	-	-	<0.22	mg/kg	TM4/PM8
PAH Sum of 17	1.41	<0.64	<0.64	<0.64	0.65	1.53			100	-	-	<0.64	mg/kg	TM4/PM8
CEN 10:1 Leachate														
Arsenic [#]	0.060	<0.025	0.116	<0.025	0.049	0.377			0.5	2	25	<0.025	ma/ka	TM30/PM17
Barium #	< 0.03	< 0.03	< 0.03	0.05	0.03	0.04			20	100	300	< 0.03	ma/ka	TM30/PM17
Cadmium #	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005			0.04	1	5	< 0.005	ma/ka	TM30/PM17
Chromium [#]	<0.015	<0.015	<0.015	<0.015	< 0.015	0.018			0.5	10	70	< 0.015	ma/ka	TM30/PM17
Copper#	<0.07	<0.07	<0.07	<0.07	<0.07	0.11			2	50	100	<0.07	mg/kg	TM30/PM17
Mercury#	< 0.0001	< 0.0001	<0.0001	< 0.0001	< 0.0001	< 0.0001			0.01	0.2	2	< 0.0001	ma/ka	TM61/PM0
Molvbdenum #	0.08	0.02	0.03	< 0.02	0.03	0.81			0.5	10	30	<0.02	ma/ka	TM30/PM17
Nickel [#]	<0.02	<0.02	0.03	<0.02	<0.02	<0.02			0.4	10	40	<0.02	mg/kg	TM30/PM17
Lead #	< 0.05	< 0.05	<0.05	< 0.05	0.08	0.09			0.5	10	50	<0.05	ma/ka	TM30/PM17
Antimony#	0.05	0.02	0.11	<0.02	0.06	0.08			0.06	0.7	5	<0.02	mg/kg	TM30/PM17
Selenium #	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03			0.1	0.5	7	< 0.03	mg/kg	TM30/PM17
Zinc [#]	0.06	0.03	0.05	0.30	0.22	0.09			4	50	200	< 0.03	ma/ka	TM30/PM17
Total Dissolved Solids#	1390	1281	800	390	840	1939			4000	60000	100000	<350	mg/kg	TM20/PM0
Dissolved Organic Carbon	90	<20	50	<20	30	130			500	800	1000	<20	mg/kg	TM60/PM0
, i i i i i i i i i i i i i i i i i i i														
Mass of raw test portion	0.1044	0.1032	0.1242	0.1066	0.1032	0.092			-	-	-		kg	NONE/PM17
Dry Matter Content Ratio	85.9	86.9	72.2	84.2	87.2	98.1			-	-	-	<0.1	%	NONE/PM4
Leachant Volume	0.885	0.887	0.865	0.883	0.887	0.898			-	-	-		I	NONE/PM17
Eluate Volume	0.8	0.8	0.8	0.8	0.8	0.8			-	-	-		I	NONE/PM17
рН *	7.68	7.72	7.04	7.38	7.52	7.54			-	-	-	<0.01	pH units	TM73/PM11
Phenol	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			1	-	-	<0.1	mg/kg	TM26/PM0
Fluoride	<3	<3	<3	<3	<3	8			-	-	-	<3	mg/kg	TM173/PM0
Sulphate as SO4 #	361	530	490	105	172	175			1000	20000	50000	<5	mg/kg	TM38/PM0
Chloride #	234	374	64	44	252	536			800	15000	25000	<3	mg/kg	TM38/PM0

Client Name:	Ground Investigations Ireland
Reference:	9717-06-20
Location:	Avoca River
Contact:	Barry Sexton

Matrix : Solid

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	EPH Interpretation
20/8722	1	S1A		1-3	No interpretation possible
20/8722	1	S1B		4-6	No interpretation possible
20/8722	1	S2A		7-9	No interpretation possible
20/8722	1	S2B		10-12	No interpretation possible
20/8722	1	S3A		13-15	Degraded diesel, Lubricating oil & PAH's
20/8722	1	S3B		16-18	Degraded diesel & Lubricating oil

Asbestos Analysis

Element Materials Technology

Client Name:	Ground Investigations Ireland
Reference:	20/06/9717
Location:	Avoca River
Contact:	Barry Sexton

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level less than 0.1%, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Element Materials Technology consultant, Element Materials Technology cannot be responsible for inaccurate or unrepresentative sampling.

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Date Of Analysis	Analysis	Result
20/8722	1	S1A		2	14/07/2020	General Description (Bulk Analysis)	Soil/Stone
					14/07/2020	Asbestos Fibres	NAD
					14/07/2020	Asbestos ACM	NAD
					14/07/2020	Asbestos Type	NAD
					14/07/2020	Asbestos Level Screen	NAD
20/8722	1	S1B		5	14/07/2020	General Description (Bulk Analysis)	Soil/Stone
					14/07/2020	Asbestos Fibres	NAD
					14/07/2020	Asbestos ACM	NAD
					14/07/2020	Asbestos Type	NAD
					14/07/2020	Asbestos Level Screen	NAD
20/8722	1	S2A		8	14/07/2020	General Description (Bulk Analysis)	Soil/Stone
					14/07/2020	Asbestos Fibres	NAD
					14/07/2020	Asbestos ACM	NAD
					14/07/2020	Asbestos Type	NAD
					14/07/2020	Asbestos Level Screen	NAD
20/8722	1	S2B		11	14/07/2020	General Description (Bulk Analysis)	Soil/Stone
					14/07/2020	Asbestos Fibres	NAD
					14/07/2020	Asbestos ACM	NAD
					14/07/2020	Asbestos Type	NAD
					14/07/2020	Asbestos Level Screen	NAD
20/8722	1	S3A		14	14/07/2020	General Description (Bulk Analysis)	Soil/Stones
					14/07/2020	Asbestos Fibres	NAD
					14/07/2020	Asbestos ACM	NAD
					14/07/2020	Asbestos Type	NAD
					14/07/2020	Asbestos Level Screen	NAD
20/8722	1	S3B		17	14/07/2020	General Description (Bulk Analysis)	Soil/Stones
					14/07/2020	Asbestos Fibres	NAD
					14/07/2020	Asbestos ACM	NAD
					14/07/2020	Asbestos Type	NAD
					14/07/2020	Asbestos Level Screen	NAD

Client Name:Ground Investigations IrelandReference:9717-06-20Location:Avoca RiverContact:Barry Sexton

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
					No deviating sample report results for job 20/8722	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 20/8722

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range
AA	x20 Dilution

Please include all sections of this report if it is reproduced All solid results are expressed on a dry weight basis unless stated otherwise.

EMT Job No: 20/8722

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM16	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM17	Modified US EPA method 8270D v5:2014. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3:1990/USEPA 160.1/3 (TDS/TS: 1971) Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes		AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.	Yes		AD	Yes

Method Code Appendix

EMT Job No: 20/8722

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			AR	Yes
ТМ30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
ТМ30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
ТМ30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE re	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE re	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993 (comparabl	PM0	No preparation is required.	Yes		AR	Yes
ТМЗ8	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993 (comparabl	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
ТМ60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060A (2002), APHA SMEWW 5310B:1999 22nd Edition, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			AR	Yes
TM61	Determination of Mercury by Cold Vapour Atomic Fluorescence - WATERS: Modified USEPA Method 245.7, Rev 2, Feb 2005. SOILS: Modified USEPA Method 7471B, Rev.2, Feb 2007	PM0	No preparation is required.	Yes		AR	Yes
EMT Job No: 20/8722

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM65	Asbestos Bulk Identification method based on HSG 248 First edition (2006)	PM42	Modified SCA Blue Book V.12 draft 2017 and WM3 1st Edition v1.1:2018. Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377- 3:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.			AR	Yes
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377- 3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 9214 - 340.2 (EPA 1998)	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AD	Yes
NONE	No Method Code	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.				
NONE	No Method Code	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.			AR	
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.			AR	

Method Code Appendix

Issue :

Element Materials Technology Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA P: +44 (0) 1244 833780 F: +44 (0) 1244 833781

W: www.element.com

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland ac-MR Barry Sexton Attention : Date : 21st July, 2020 9717-06-20 Your reference : Our reference : Test Report 20/8722 Batch 1 Schedule B Avoca River Location : Date samples received : 6th July, 2020 Status : Final report

Eighteen samples were received for analysis on 6th July, 2020 of which six were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

1

Authorised By:

b luce

Bruce Leslie Project Manager

Please include all sections of this report if it is reproduced

Ground Investigations Ireland 9717-06-20 Avoca River Barry Sexton 20/8722

Report : CEN 10:1 1 Batch

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

									_		
EMT Sample No.	1-3	4-6	7-9	10-12	13-15	16-18					
Sample ID	S1A	S1B	S2A	S2B	S3A	S3B					
Depth									Please se	e attached n	otes for all
COC No / misc									abbrevi	ations and a	cronyms
Containers	VJT	VJT	VJT	VJT	VJT	VJT					
Sample Date	01/07/2020	01/07/2020	01/07/2020	01/07/2020	01/07/2020	01/07/2020					
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil					
Batak Newboo	301	301	301	301	3011	301					
Batch Number	1	1	1	1	1	1			LOD/LOR	Units	Method No
Date of Receipt	06/07/2020	06/07/2020	06/07/2020	06/07/2020	06/07/2020	06/07/2020					
Dissolved Molybdenum *	0.008	0.003	< 0.002	0.009	0.003	0.010			<0.002	mg/l	TM30/PM17
Dissolved Molybdenum (A10)"	0.08	0.03	<0.02	0.09	0.03	0.10			<0.02	mg/kg	TM30/PM17
Dissolved Selenium	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003			<0.003	ma/ka	TM30/PM17
Dissolved Selenium (A10)	-0.05	-0.00	-0.00	-0.00	-0.00	-0.00			-0.00	iiig/kg	
Chloride [#]	27.6	40.3	7.5	5.6	27.2	44.2			<0.3	mg/l	TM38/PM0
Chloride [#]	276	403	75	56	272	442			<3	mg/kg	TM38/PM0
Total Dissolved Solids [#]	125	128	181	107	74	291			<35	mg/l	TM20/PM0
Total Dissolved Solids [#]	1250	1281	1809	1070	740	2909			<350	mg/kg	TM20/PM0
	[[[

Client Name:Ground Investigations IrelandReference:9717-06-20Location:Avoca RiverContact:Barry Sexton

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
					No deviating sample report results for job 20/8722	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 20/8722

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range

EMT Job No: 20/8722

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM20	Modified BS 1377-3:1990/USEPA 160.1/3 (TDS/TS: 1971) Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes		AR	Yes
ТМ30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993 (comparabl	PM0	No preparation is required.	Yes		AR	Yes

Issue :

Element Materials Technology Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA P: +44 (0) 1244 833780 F: +44 (0) 1244 833781

W: www.element.com

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland ac-MR Barry Sexton Attention : Date : 29th July, 2020 9717-06-20 Your reference : Our reference : Test Report 20/9183 Batch 1 Avoca River Location : Date samples received : 14th July, 2020 Status : Final report

Six samples were received for analysis on 14th July, 2020 of which six were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

2

Authorised By:

6 June

Bruce Leslie Project Manager

Please include all sections of this report if it is reproduced

Client Name:
Reference:
Location:
Contact:
EMT Job No:

Ground Investigations Ireland 9717-06-20 Avoca River Barry Sexton 20/9183

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

	20/0100										
EMT Sample No.	1-3	4-6	7-9	10-12	13-15	16-18					
Sample ID	S1A	S1B	S2A	S2B	S3A	S3B					
Depth									Please se	e attached n	otes for all
COC No / misc									abbrevi	ations and ad	cronyms
Containers	VJT	VJT	VJT	VJT	VJT	VJT					
Sample Date	13/07/2020	13/07/2020	13/07/2020	13/07/2020	13/07/2020	13/07/2020					
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil					
Batch Number	1	1	1	1	1	1				Units	Method
Date of Receipt	14/07/2020	14/07/2020	14/07/2020	14/07/2020	14/07/2020	14/07/2020			200/2011	onno	No.
Mass of raw test portion	0.0994	0.0943	0.1313	0.102	0.1196	0.144				kg	NONE/PM17
Mass of dried test portion	0.09	0.09	0.09	0.09	0.09	0.09				kg	NONE/PM17

Ground Investigations Ireland 9717-06-20 Avoca River Barry Sexton 20/9183

Report : CEN 10:1 1 Batch

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EMT Sample No.	1-3	4-6	7-9	10-12	13-15	16-18					
Sample ID	S1A	S1B	S2A	S2B	S3A	S3B					
Depth									Please se	e attached n	otes for all
COC No / misc									abbrevi	cronyms	
Containers	VJT	VJT	VJT	VJT	VJT	VJT					
Sample Date	13/07/2020	13/07/2020	13/07/2020	13/07/2020	13/07/2020	13/07/2020					
Sample Tuna	0.0112020	0.0112020	0.0112020	Call	0.0112020	0.0112020					
Sample Type	501	501	501	501	501	501					
Batch Number	1	1	1	1	1	1			LOD/LOR	Units	Method
Date of Receipt	14/07/2020	14/07/2020	14/07/2020	14/07/2020	14/07/2020	14/07/2020					NO.
Dissolved Antimony#	<0.002	<0.002	<0.002	<0.002	<0.002	0.003			<0.002	mg/l	TM30/PM17
Dissolved Molybdenum [#]	< 0.002	< 0.002	< 0.002	0.003	0.002	0.028			<0.002	mg/l	TM30/PM17
Dissolved Molybdenum (A10)"	<0.02	<0.02	<0.02	0.03	0.02	0.28			<0.02	mg/kg	TM30/PM17
Dissolved Selenium	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003			<0.003	mg/i	TM20/PM17
Dissolved Selenium (ATU)	~0.03	~0.05	~0.05	~0.03	~0.03	~0.03			~0.03	mg/Kg	
Chloride [#]	1.4	6.0	2.4	0.9	7.7	21.2			<0.3	mg/l	TM38/PM0
Chloride [#]	14	60	24	9	77	212			<3	mg/kg	TM38/PM0
Total Dissolved Solids [#]	76	44	83	44	109	195			<35	mg/l	TM20/PM0
Total Dissolved Solids [#]	760	440	830	440	1090	1950			<350	mg/kg	TM20/PM0
					1	1		1			

Element Material	s Tech	nology														
Client Name: Reference: Location:	Ground In 9717-06-2 Avoca Riv	ivestigatior 20 ver	ns Ireland				Report : Solids: V=	EN12457 _	_2 r, J=250g gl	ass jar, T=p	lastic tub					
Contact: FMT Job No:	Barry Sex 20/9183	ton														
EMT Sample No.	1-3	4-6	7-9	10-12	13-15	16-18										
Sample ID	S1A	S1B	52A	S2B	53A	53B										
Campio 12																
Depth														Please se	e attached n	otes for all
COC No / misc														abbrevi	ations and ad	cronyms
Containers	VJT	VJT	VJT	VJT	VJT	VJT										
Sample Date	13/07/2020	13/07/2020	13/07/2020	13/07/2020	13/07/2020	13/07/2020										
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil										
Batch Number	1	1	1	1	1	1					Inert	Stable Non- reactive	Hazardous	LOD LOR	Units	Method No.
Date of Receipt	14/07/2020	14/07/2020	14/07/2020	14/07/2020	14/07/2020	14/07/2020										
Cond Traste Analysis																
CEN 10:1 Leachate																
Total Dissolved Solids #	760	440	830	440	1090	1950					4000	60000	100000	<350	mg/kg	TM20/PM
Mass of raw test portion	0.0994	0.0943	0.1313	0.102	0.1196	0.144					-				kg	NONE/PM1
Dry Matter Content Ratio	90.1	95.5	68.3	87.8	75.4	62.4					-	-	-	<0.1	%	NONE/PM
Leachant Volume	0.89	0.896	0.858	0.887	0.871	0.846					•	•	•		1	NONE/PM1
	0.02	0.00	0.0	0.00	0.0	0.00					_	_	_			NONE/I MI
Chloride #	14	60	24	9	77	212					800	15000	25000	<3	mg/kg	TM38/PM
	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1

Client Name: Ground Investigations Ireland **Reference:** 9717-06-20

Avoca River Location: Contact:

Barry Sexton

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
20/9183	1	S1A		1-3	Metals	Sample holding time exceeded
20/9183	1	S1B		4-6	Metals	Sample holding time exceeded
20/9183	1	S2A		7-9	Metals	Sample holding time exceeded
20/9183	1	S2B		10-12	Metals	Sample holding time exceeded
20/9183	1	S3A		13-15	Metals	Sample holding time exceeded
20/9183	1	S3B		16-18	Metals	Sample holding time exceeded

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

Notification of Deviating Samples

Matrix : CEN 10:1 1 Batch

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 20/9183

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range

EMT Job No: 20/9183

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.	PM0	No preparation is required.			AR	
TM20	Modified BS 1377-3:1990/USEPA 160.1/3 (TDS/TS: 1971) Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes		AR	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993 (comparabl	PM0	No preparation is required.	Yes		AR	Yes
NONE	No Method Code	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.				
NONE	No Method Code	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.			AR	
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.			AR	

Method Code Appendix

Element Materials Technology Unit 3 Deeside Point Zone 3 **Deeside Industrial Park** Deeside CH5 2UA

P: +44 (0) 1244 833780 F: +44 (0) 1244 833781

W: www.element.com

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland

Attention :	Barry Sexton
Date :	29th July, 2020
Your reference :	9717-06-20
Our reference :	Test Report 20/8722 Batch 1 Schedule D
Location :	Avoca River
Date samples received :	6th July, 2020
Status :	Final report
Issue :	2

Eighteen samples were received for analysis on 6th July, 2020 of which twelve were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied. All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

1. June

Bruce Leslie Project Manager

Please include all sections of this report if it is reproduced

Client Name:							
Reference:							
Location:							
Contact:							
EMT Job No:							

Ground Investigations Ireland 9717-06-20 Avoca River Barry Sexton 20/8722

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle H=H_2SO_4, Z=ZnAc, N=NaOH, HN=HN0_3

EMT Sample No.	19	20	21	22	23	24	25	26	27	28			
Sample ID	S1A-LEACH 2	S1B-LEACH 2	S2A-LEACH 2	S2B-LEACH 2	S3A-LEACH 2	S3B-LEACH 2	S1A-LEACH 3	S1B-LEACH 3	S2A-LEACH 3	S2B-LEACH 3			
Depth											Disease		
COC No / misc											abbrevi	ations and ac	cronyms
Containara	0	0	0	0	0	6	6	6	6	6			
Containers	G	G	G	G	G	G	G	G	G	G			
Sample Date	<>	<>	<>	<>	<>	<>	<>	<>	<>	<>			
Sample Type	Leachate												
Batch Number	1	1	1	1	1	1	1	1	1	1		Unite	Method
Date of Receipt	06/07/2020	06/07/2020	06/07/2020	06/07/2020	06/07/2020	06/07/2020	06/07/2020	06/07/2020	06/07/2020	06/07/2020	LOD/LOIX	Onita	No.
Dissolved Antimony	2	<2	<2	<2	4	<2	<2	<2	<2	3	<2	ug/l	TM30/PM14
Dissolved Molybdenum	<2	<2	<2	3	<2	7	<2	<2	<2	<2	<2	ug/l	TM30/PM14
Dissolved Selenium	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	ug/l	TM30/PM14
Chloride	1.0	1.9	0.8	<0.3	26.9	43.4	0.3	<0.3	0.4	<0.3	<0.3	mg/l	TM38/PM0
Total Dissolved Solids	63	36	49	45	82	256	<35	<35	<35	<35	<35	mg/l	TM20/PM0

Client Name:							
Reference:							
Location:							
Contact:							
EMT Job No:							

Ground Investigations Ireland 9717-06-20 Avoca River Barry Sexton 20/8722

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle H=H_2SO_4, Z=ZnAc, N=NaOH, HN=HN0_3

EMT Sample No.	29	30							
Sample ID	S3A-LEACH 3	S3B-LEACH 3							
Depth							D		
COC No / misc							abbrevi	ations and ac	cronyms
Containers	G	G							
Containers	6	6							
Sample Date	\diamond	\diamond							
Sample Type	Leachate	Leachate							
Batch Number	1	1						Units	Method
Date of Receipt	06/07/2020	06/07/2020					LOBILOIT	onno	No.
Dissolved Antimony	<2	<2					<2	ug/l	TM30/PM14
Dissolved Molybdenum	<2	<2					<2	ug/l	TM30/PM14
Dissolved Selenium	<3	<3					<3	ug/l	TM30/PM14
Chloride	0.7	2.4					<0.3	mg/l	TM38/PM0
Total Dissolved Solids	<35	35					<35	ma/l	TM20/PM0
	-00						-00	mgn	

Client Name:Ground Investigations IrelandReference:9717-06-20Location:Avoca RiverContact:Barry Sexton

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
					No deviating sample report results for job 20/8722	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 20/8722

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range

EMT Job No: 20/8722

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM20	Modified BS 1377-3:1990/USEPA 160.1/3 (TDS/TS: 1971) Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.				
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP	PM14	Preparation of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for Dissolved metals, and remain unfiltered for Total metals then acidified				
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993 (comparabl	PM0	No preparation is required.				

Issue :

Element Materials Technology Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA P: +44 (0) 1244 833780 F: +44 (0) 1244 833781

W: www.element.com

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland ac-MR Barry Sexton Attention : Date : 13th July, 2020 9717-06-20 Your reference : Our reference : Test Report 20/8716 Batch 1 Avoca River Location : Date samples received : 6th July, 2020 Status : Final report

Six samples were received for analysis on 6th July, 2020 of which six were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

1

Authorised By:

b lun

Bruce Leslie Project Manager

Please include all sections of this report if it is reproduced

Client Name: Reference: Location: Contact: EMT Job No:

Ground Investigations Ireland 9717-06-20 Avoca River Barry Sexton 20/8716

Report : Liquid

 $\label{eq:Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle \\ H=H_2SO_4, Z=ZnAc, N=NaOH, HN=HN0_3$

EMT Sample No.	1-10	11-20	21-30	31-40	41-50	51-60						
Sample ID	SW01 A	SW01 B	SW01 C	GW WS08	GW WS09	GW WS13						
Depth										Please se	e attached n	otes for all
COC No / misc										abbrevi	ations and a	cronyms
Containers	V H HN HCL Z P BOD G	V H HN HCL Z P BOD G	V H HN HCL Z P BOD G	V H HNUF HCL Z P BOD G	V H HNUF HCL Z P BOD G	V H HNUF HCL Z P BOD G						
Sample Date	01/07/2020	01/07/2020	01/07/2020	02/07/2020	02/07/2020	02/07/2020						
	01/07/2020	01/07/2020	01/07/2020	02/07/2020	02/07/2020	02/07/2020						
Sample Type	Surface Water	Surface Water	Surface Water	Ground Water	Ground Water	Ground Water						
Batch Number	1	1	1	1	1	1				LOD/LOR	Units	Method
Date of Receipt	06/07/2020	06/07/2020	06/07/2020	06/07/2020	06/07/2020	06/07/2020						No.
Dissolved Antimony [#]	<2	<2	<2	<2	<2	<2				<2	ug/l	TM170/PM14
Dissolved Arsenic [#]	1.2	1.2	1.1	10.8	4.2	8.2				<0.9	ug/l	TM170/PM14
Dissolved Barium [#]	7.2	8.3	8.3	11.1	39.8	61.7				<1.8	ug/l	TM170/PM14
Dissolved Cadmium #	0.30	0.27	0.25	<0.03	<0.03	<0.03				<0.03	ug/l	TM170/PM14
Total Dissolved Chromium*	0.4	0.9	0.3	1.1	0.7	0.9				<0.2	ug/l	TM170/PM14
Dissolved Copper [#]	12	11	11	<1	<1	<1				<1	ug/l	TM170/PM14
Total Dissolved Iron *	484.2	385.1	382.3	530.4	2959.0 _{AA}	5113.0 _{AB}				<4.7	ug/l	TM170/PM14
Dissolved Lead *	5.3	4.5	4.2	1.8	<0.4	1.5				<0.4	ug/l	TM170/PM14
Dissolved Manganese "	90.6	101.7	136.3	1752.8 _{AA}	3574.8 _{AA}	5338.5 _{AB}				<1.5	ug/l	TM170/PM14
Dissolved Mercury	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	ug/i	TM170/PM14
Dissolved Molybdenum	0.5	0.4	1.0	1.0	1.2	1.5				<0.2	ug/i	TM170/PM14
Dissolved Nickel	-1.2	-1.2	-1.2	-1.9	-1.2	<1.2				<1.2	ug/l	TM170/PM14
Dissolved Zinc [#]	94.2	87.2	84.5	2.3	7.5	6.7				<1.5	ug/l	TM170/PM14
Dissolved Zinc	04.2	01.2	04.0	2.0	1.0	0.1				\$1.0	ugn	
Dissolved Calcium [#]	4.8	9.1	9.3	75.9	65.5	64.2				<0.2	mg/l	TM30/PM14
Dissolved Magnesium [#]	2.2	3.2	3.2	17.8	18.4	26.6				<0.1	mg/l	TM30/PM14
Dissolved Potassium [#]	0.7	1.3	1.3	7.3	1.3	1.5				<0.1	mg/l	TM30/PM14
Dissolved Sodium [#]	8.6	13.5	13.7	64.9	77.1	23.8				<0.1	mg/l	TM30/PM14
GRO (>C4-C8) #	<10	<10	<10	<10	<10	<10				<10	ug/l	TM36/PM12
GRO (>C8-C12)#	<10	<10	<10	<10	<10	<10				<10	ug/l	TM36/PM12
GRO (>C4-C12)#	<10	<10	<10	<10	<10	<10				<10	ug/l	TM36/PM12
MTBE [#]	<5	<5	<5	<5	<5	<5				<5	ug/l	TM36/PM12
Benzene #	<5	<5	<5	<5	<5	<5				<5	ug/l	TM36/PM12
Toluene #	<5	<5	<5	<5	<5	<5				<5	ug/l	TM36/PM12
Ethylbenzene *	<5	<5	<5	<5	<5	<5				<5	ug/l	TM36/PM12
m/p-Xylene *	<5	<5	<5	<5	<5	<5				<5	ug/l	TM36/PM12
o-xylene "	<5	<5	<5	<5	<5	<5				<5	ug/I	TN/36/PM12
EPH (C8-C40)#	<10	<10	<10	<10	<10	<10				<10	ug/l	TM5/PM30
Mineral Oil (C10-C40)	<10	<10	<10	<10	<10	<10				<10	ug/i	TM5/PM16/PM30
											-9,1	
TPH CWG												
Aliphatics												
>C5-C6 [#]	<10	<10	<10	<10	<10	<10				<10	ug/l	TM36/PM12
>C6-C8 [#]	<10	<10	<10	<10	<10	<10				<10	ug/l	TM36/PM12
>C8-C10#	<10	<10	<10	<10	<10	<10				<10	ug/l	TM36/PM12
>C10-C12#	<5	<5	<5	<5	<5	<5				<5	ug/l	TM5/PM16/PM30
>C12-C16 [#]	<10	<10	<10	<10	<10	<10				<10	ug/l	TM5/PM16/PM30
>C16-C21 #	<10	<10	<10	<10	<10	<10				<10	ug/l	TM5/PM16/PM30
>C21-C35#	<10	<10	<10	<10	<10	<10				<10	ug/l	TM5/PM16/PM30
Total aliphatics C5-35 #	<10	<10	<10	<10	<10	<10				<10	ug/l	TM5/TM36/PM12/PM16/PM30
	1	1	1	1	1	1				1	1	

Client Name:							
Reference:							
Location:							
Contact:							
EMT Job No:							

Ground Investigations Ireland 9717-06-20 Avoca River Barry Sexton 20/8716

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle H=H_2SO_4, Z=ZnAc, N=NaOH, HN=HN0_3

EMT Sample No.	1-10	11-20	21-30	31-40	41-50	51-60					
Sample ID	SW01 A	SW01 B	SW01 C	GW WS08	GW WS09	GW WS13					
Depth									Diagon an	o ottoobod r	atoo for all
COC No / misc									abbrevi	ations and a	cronyms
Containors											
Containers	VH HN HCL2P BOD G	VH HARGE 2 P BOD G	V H HN HUL 2 P BOD G	VHNOF NCC2P BOD G	VHINGPIELZP BOD G	VHING NEEZ PBODG					
Sample Date	01/07/2020	01/07/2020	01/07/2020	02/07/2020	02/07/2020	02/07/2020					
Sample Type	Surface Water	Surface Water	Surface Water	Ground Water	Ground Water	Ground Water					
Batch Number	1	1	1	1	1	1				Unito	Method
Date of Receipt	06/07/2020	06/07/2020	06/07/2020	06/07/2020	06/07/2020	06/07/2020			LOD/LOK	Offics	No.
TPH CWG											
Aromatics											
>C5-EC7#	<10	<10	<10	<10	<10	<10			<10	ug/l	TM36/PM12
>EC7-EC8 [#]	<10	<10	<10	<10	<10	<10			<10	ug/l	TM36/PM12
>EC8-EC10 [#]	<10	<10	<10	<10	<10	<10			<10	ug/l	TM36/PM12
>EC10-EC12 [#]	<5	<5	<5	<5	<5	<5			<5	ug/l	TM5/PM16/PM30
>EC12-EC16#	<10	<10	<10	<10	<10	<10			<10	ug/l	TM5/PM16/PM30
>EC16-EC21 #	<10	<10	<10	<10	<10	<10			<10	ug/l	TM5/PM16/PM30
>EC21-EC35"	<10	<10	<10	<10	<10	<10			<10	ug/l	TM5/PM16/PM30
Total aromatics C5-35	<10	<10	<10	<10	<10	<10			<10	ug/i	TM5/TM36/PM12/PM16/PM38
rotal aliphatics and aromatics(C5-35)	210				210					ugn	
Sulphate as SO4 [#]	10.7	12.6	13.8	<0.5	150.0	1.5			<0.5	mg/l	TM38/PM0
Chloride [#]	14.1	19.5	21.5	56.4	50.3	17.9			<0.3	mg/l	TM38/PM0
Nitrate as NO3 #	3.4	3.6	4.1	<0.2	<0.2	<0.2			<0.2	mg/l	TM38/PM0
Ortho Phosphate as PO4 #	<0.06	<0.06	0.07	<0.06	<0.06	<0.06			<0.06	mg/l	TM38/PM0
Ammoniacal Nitrogen as N [#]	0.10	0.12	0.19	0.40	0.59	1.33			<0.03	mg/l	TM38/PM0
Hexavalent Chromium	<2	<2	<2	<2	<2	<2			<2	ug/l	TM38/PM0
Total Dissolved Chromium III	<2	<2	<2	<2	<2	<2			<2	ug/l	NONE/NONE
Total Alkalinity as CaCO3 #	16	22	26	444	192	314			<1	mg/l	TM75/PM0
BOD (Settled) #	<1	<1	<1	6	1	6			<1	mg/l	TM58/PM0
COD (Settled) #	16	15	19	159	108	187			<7	mg/l	TM57/PM0
Total Dissolved Solids #	74	99	105	591	597	411			<35	mg/l	TM20/PM0
Total Suspended Solids *	<10	<10	<10	16563	5590	3453			<10	mg/l	TM37/PM0

Client Name: Ground Investigations Ireland Reference: 9717-06-20

Location: Avoca River

Contact: Barry Sexton

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
20/8716	1	SW01 A		1-10	BOD	Sample holding time exceeded
20/8716	1	SW01 B		11-20	BOD	Sample holding time exceeded
20/8716	1	SW01 C		21-30	BOD	Sample holding time exceeded
20/8716	1	GW WS08		31-40	BOD	Sample holding time exceeded
20/8716	1	GW WS09		41-50	BOD	Sample holding time exceeded
20/8716	1	GW WS13		51-60	BOD	Sample holding time exceeded

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

Notification of Deviating Samples

Matrix : Liquid

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 20/8716

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range
AA	x5 Dilution

Please include all sections of this report if it is reproduced All solid results are expressed on a dry weight basis unless stated otherwise.

AB	x10 Dilution
----	--------------

EMT Job No: 20/8716

Test Method No.	Description	Prep Method No. (if appropriate)	Description		MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM16/PM30	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE/Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM16/PM30	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE/Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM5/TM36	please refer to TM5 and TM36 for method details	PM12/PM16/PM30	please refer to PM16/PM30 and PM12 for method details	Yes			
TM20	Modified BS 1377-3:1990/USEPA 160.1/3 (TDS/TS: 1971) Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes			
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP	PM14	Preparation of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for Dissolved metals, and remain unfiltered for Total metals then acidified	Yes			
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE re	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM37	Modified methods USEPA 160.2 (1983), EN872:2005 and APHA SMEWW 2540D:1999 22nd Edition. Gravimetric determination of Total Suspended Solids. Sample is filtered through a 1.5um pore size glass fibre filter and the resulting residue is dried and weighed.	PM0	No preparation is required.	Yes			
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993 (comparabl	PM0	No preparation is required.				
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993 (comparabl	PM0	No preparation is required.	Yes			

EMT Job No: 20/8716

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM57	Modified US EPA Method 410.4. (Rev. 2.0 1993) Comparable with ISO 15705:2002. Chemical Oxygen Demand is determined by hot digestion with Potassium Dichromate and measured spectrophotometerically.	PM0	No preparation is required.	Yes			
TM58	APHA SMEWW 5210B:1999 22nd Edition. Comparible with ISO 5815:1989. Measurement of Biochemical Oxygen Demand. When cBOD (Carbonaceous BOD) is requested a nitrification inhibitor is added which prevents the oxidation of reduced forms of nitrogen, such as am	PM0	No preparation is required.	Yes			
TM75	Modified US EPA method 310.1 (1978). Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.	Yes			
TM170	Determination of Trace Metals by ICP-MS (Inductively Coupled Plasma – Mass Spectrometry): Modified USEPA Method 200.8, Rev. 5.4, 1994; Modified EPA Method 6020A, Rev.1, Feb 2007; Modified BS EN ISO 17294-2:2016	PM14	Preparation of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for Dissolved metals, and remain unfiltered for Total metals then acidified	Yes			
NONE	No Method Code	NONE	No Method Code				

Appendix **B**

Avoca dredging exclusion zones

Appendix C

NWCPO Local Authority Waste Facility Register

Authorisation Reference	County	Name	Address
COR-WX-16-0115-04	WX	Murphy Recycling & Aggregates Ltd	Hayestown Taghmon Co Wexford
WFP-WX-15-0081-07	WX	Sean Kinsella Site Developments Ltd	Banntown Huntingtown Gorey Co Wexford
WFP-WX-15-0090-01	WX	Ardinagh Construction & Waste Ltd	Ardinagh Taghmon Co. Wexford
WFP-WX-15-0096-02	WX	Mulligan Dismantling & Salvage Ltd.	Scarnagh Lower Ballylarkin Inch, Gorey Co. Wexford Y25 H2K1
WFP-WX-16-0099-01	WX	C&D Recycling Kavanagh Ltd	Newtown Lower Coolgreaney Gorey Co Wexford
WFP-WX-16-0101-01	WX	Edward Warren	Coolnahinch Courtown Gorey Co Wexford
WFP-WX-20-0173-01	WX	Sean Kinsella Site Developments Ltd	Banntown Huntingtown Gorey Co. Wexford

Table 10: NWCPO Local Authority Waste Facility Register

Appendix D

Current Licenced Local Soil Recovery Facilities
Table 11: Current licenced local Soil Recovery Facilities

Facility Name	County	Licence Number & Facility Type	Status	Annual Authorised Intake (Tonnes)	Year of Expected Closure
Huntstown Inert Waste Recovery (Roadstone)	Dublin	W0277-03 Soil Recovery	Active	1,500,000 (soil & stones and dredging material)	2033
Milverton Waste Recovery (Roadstone)	Skerries Co. Dublin	W0272-01 Soil Recovery	Active	400,000 (soils & stones)	2024
Calary Quarry (Roadstone Ltd)	Kilmacanogue, Co. Wicklow	W0293-01 Soil Recovery	Application	300,000 (C&D inert soil waste only)	Unknown